• Title/Summary/Keyword: 이탈궤적

Search Result 23, Processing Time 0.018 seconds

Tag Trajectory Generation Scheme for RFID Tag Tracing in Ubiquitous Computing (유비쿼터스 컴퓨팅에서 RFID 태그 추적을 위한 태그 궤적 생성 기법)

  • Kim, Jong-Wan;Oh, Duk-Shin;Kim, Kee-Cheon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.1-10
    • /
    • 2009
  • One of major purposes of a RFID system is to track moving objects using tags attached to the objects. Because a tagged object has both location and time information expressed as the location of the reader, we can index the trajectory of the object like existing spatiotemporal objects. More efficient tracking may be possible if a spatiotemporal trajectory can be formed of a tag, but there has not been much research on tag trajectory indexes. A characteristic that distinguishes tags from existing spatiotemporal objects is that a tag creates a separate trajectory in each reader by entering and then leaving the reader. As a result, there is a trajectory interruption interval between readers, in which the tag cannot be located, and this makes it difficult to track the tag. In addition, the point tags that only enter and don't leave readers do not create trajectories, so cannot be tracked. To solve this problem, we propose a tag trajectory index called TR-tree (tag trajectory R-tree in RFID system) that can track a tag by combining separate trajectories among readers into one trajectory. The results show that TR-tree, which overcomes the trajectory interruption superior performance than TPIR-tree and R-tree.

Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities (가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석)

  • Jaeyoung Ryu;Seong-Min Han;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.888-896
    • /
    • 2023
  • When an aircraft is landing, it is expected that the aircraft will follow a specified approach procedure and then land at the airport. However, depending on the airport situation, neighbouring aircraft or the instructions of the air traffic controller, there can be a deviation from the specified approach. Detecting aircraft approach patterns is necessary for traffic flow and flight safety, and this paper suggests clustering techniques to identify aircraft patterns in the approach segment. The Gaussian Mixture Model (GMM), one of the machine learning techniques, is used to cluster the trajectories of aircraft, and ADS-B data from aircraft landing at the Gimhae airport in 2019 are used. The aircraft trajectories are clustered on the plane, and a total of 86 approach trajectory patterns are extracted using the centroid value of each cluster. Considering the correlation between the approach procedure pattern and overshoots, the distribution of overshoots is calculated.

Evaluation of Effective Jamming/Deception Area of Active Decoy against Ground Tracking Radars on Dynamic Combat Scenarios (동적 교전 시나리오에서 지상 추적 레이다에 대한 이탈방사체의 효과적 재밍/기만 영역 분석)

  • Rim, Jae-Won;Lee, Sangyeob;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.269-278
    • /
    • 2017
  • We analyze the jamming/deception performance of an active decoy against ground tracking radars on dynamic combat scenarios. Based on the movement and the interference flow of an airborne platform, the trajectories of the active decoy is accurately calculated by solving 6-degree of freedom equations of motion. On realistic combat scenarios, numerical simulations are examined to analyze the jamming performance of the decoy for various movements of the platform and RF specifications of the active decoy. Effective jamming/deception area against the ground tracking radars is estimated from the simulation.

AIS 데이터를 활용한 선박궤적의 분석

  • Jeong, Jung-Sik;Park, Gye-Gak;Kim, Eun-Gyeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.38-40
    • /
    • 2012
  • 해상 교통량 증가로 급증하는 선박 사고 위험을 줄이기 위해 안전 운항 관리를 위한 연구가 필수적이다. 최근 SOLAS에서 300톤 이상 급에 대해서는 AIS의 의무 장착이 제정되면서 선박 운항의 안전에 크게 기여하고 있다. 본 연구에서는 AIS의 정적, 동적 데이터를 수집하여 항계내 통항 선박의 궤적의 곡률을 분석하여 불규칙 이동 조종선박의 움직임을 파악하였다. 기존의 과거 누적 데이터의 퍼지이론을 활용한 이상 거동의 선박식별 시스템은 전문가 시스템에 의존하여 항적의 비정상성을 판단하므로 항로의 특성에 따른 실 항해상황을 간과할 수 있는 문제점이 있다. 본 연구는 선박 움직임에 대한 궤적의 시간 AIS 정보를 활용하여 항로이탈의 변화율에 해당하는 곡률분석, 항로선으로부터 좌우의 변동을 보다 정확하게 모니터링 할 수 있는 이상 거동 선박을 식별하는 방법을 제안한다. 본 연구는 VTS 및 VMS의 응용서비스로서 해양사고의 사전예방을 위한 연안 및 항만수로의 효율적인 관리에 기여할 것이다.

  • PDF

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

Development of Four-Wheel Independent Steering Driving Platform for Agricultural Robot (식물 생산로봇에 적용을 위한 사륜 독립 조향 구동 플랫폼 연구)

  • Kim, Kyoung-Chul;Yang, Chang-Wan;Kim, Kyoung-Ju;Ryuh, Beom-Sahng
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.942-950
    • /
    • 2011
  • Automation is important in modern agricultural environment, which demands the highest level of technology. In the paper an independent four-wheel steering driving platform is developed especially for horticulture in glass house farm. Mathematical modeling of the four wheel system is carried out for smooth movement. The relationships between steering angle, the turning radius, and escape trajectory are simulated using the dynamic analysis program. Optimal driving algorithm is sought through the performance evaluation.

A Study on Impact of an Adjacent Structure by a Rocket Plume (유도탄 화염이 인접 구조물에 미치는 영향 연구)

  • Yang, Young-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.488-494
    • /
    • 2014
  • Rocket Plumes can cause serious damage to launch vehicles and adjacent structures. This paper describes the impact of an adjacent structure by a rocket plume. Each parameter related with dynamic behavior of a missile is modeled with probabilistic distributions of variables. Flyout analyses of initial behavior of a vertically launched missile are performed using Monte-Carlo simulation and flow-motion analyses were conducted by using CFD. In this way, when a missile is fired by a ship, the impact of an adjacent structure by a rocket plume was analyzed.

Estimating a Range of Lane Departure Allowance based on Road Alignment in an Autonomous Driving Vehicle (자율주행 차량의 도로 평면선형 기반 차로이탈 허용 범위 산정)

  • Kim, Youngmin;Kim, Hyoungsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.81-90
    • /
    • 2016
  • As an autonomous driving vehicle (AV) need to cope with external road conditions by itself, its perception performance for road environment should be better than that of a human driver. A vision sensor, one of AV sensors, performs lane detection function to percept road environment for performing safe vehicle steering, which relates to define vehicle heading and lane departure prevention. Performance standards for a vision sensor in an ADAS(Advanced Driver Assistance System) focus on the function of 'driver assistance', not on the perception of 'independent situation'. So the performance requirements for a vision sensor in AV may different from those in an ADAS. In assuming that an AV keep previous steering due to lane detection failure, this study calculated lane departure distances between the AV location following curved road alignment and the other one driving to the straight in a curved section. We analysed lane departure distance and time with respect to the allowance of lane detection malfunction of an AV vision sensor. With the results, we found that an AV would encounter a critical lane departure situation if a vision sensor loses lane detection over 1 second. Therefore, it is concluded that the performance standards for an AV should contain more severe lane departure situations than those of an ADAS.

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.