• Title/Summary/Keyword: 이진 탐색 트리

Search Result 29, Processing Time 0.022 seconds

Enhancing Retrieval Performance for Hierarchical Compact Binary Tree (계층형 집약 이진 트리의 검색 성능 개선)

  • Kim, Sung Wan
    • Journal of Creative Information Culture
    • /
    • v.5 no.3
    • /
    • pp.345-353
    • /
    • 2019
  • Several studies have been proposed to improve storage space efficiency by expressing binary trie data structure as a linear binary bit string. Compact binary tree approach generated using one binary trie increases the key search time significantly as the binary bit string becomes very long as the size of the input key set increases. In order to reduce the key search range, a hierarchical compact binary tree technique that hierarchically expresses several small binary compact trees has been proposed. The search time increases proportionally with the number and length of binary bit streams. In this paper, we generate several binary compact trees represented by full binary tries hierarchically. The search performance is improved by allowing a path for the binary bit string corresponding to the search range to be determined through simple numeric conversion. Through the performance evaluation using the worst time and space complexity calculation, the proposed method showed the highest performance for retrieval and key insertion or deletion. In terms of space usage, the proposed method requires about 67% ~ 68% of space compared to the existing methods, showing the best space efficiency.

Binary Image Search using Hierarchical Bintree (계층적 이분트리를 활용한 이진 이미지 탐색 기법)

  • Kim, Sung Wan
    • Journal of Creative Information Culture
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • In order to represent and process spatial data, hierarchical data structures such as a quadtree or a bintree are used. Various approaches for linearly representing the bintree have been proposed. S-Tree has the advantage of compressing the storage space by expressing binary region image data as a linear binary bit stream, but the higher the resolution of the image, the longer the length of the binary bit stream, the longer the storage space and the lower the search performance. In this paper, we construct a hierarchical structure of multiple separated bintrees with a full binary tree structure and express each bintree as two linear binary bit streams to reduce the range required for image search. It improves the overall search performance by performing a simple number conversion instead of searching directly the binary bit string path. Through the performance evaluation by the worst-case space-time complexity analysis, it was analyzed that the proposed method has better search performance and space efficiency than the previous one.

A Study on Exteded Binary Search Tree Algorithms Considering Cache Effect (캐쉬 효과를 고려한 확장된 이진 탐색 트리 알고리즘에 관한 연구)

  • 김경훈;정균락
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.551-553
    • /
    • 2000
  • VLSI 기술의 발전에 따라 프로세서의 속도는 빠르게 증가하고 있는 반면 메모리의 속도는 이를 뒷받침하지 못하여 속도의 차이를 줄이기 위해 캐쉬(cache) 메모리를 사용하고 있다. 캐쉬가 알고리즘의 실행시간에 미치는 영향이 점점 더 커지고 있으나 이제까지 개발된 대부분의 알고리즘들은 이러한 캐쉬의 중요성을 고려하지 않고 개발되었다. 본 논문에서는 캐쉬 효과를 고려한 확장된 이진 탐색 트리 알고리즘에 관해 연구하였고, 실험을 통하여 기존의 이진 탐색 트리와 제안된 알고리즘의 성능을 비교하였다.

  • PDF

Compact Binary Tree for Dynamic Operations (동적 연산을 위한 집약 이진(CB) 트리)

  • Kim, Sung Wan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.293-294
    • /
    • 2014
  • 정보 검색 분야에서 키 탐색을 빠르게 하기 위한 인덱스 구조로 이진 트라이가 대표적으로 사용된다. CB 트리는 이진 트라이 구조를 구현할 경우 발생하는 저장 공간의 부담을 축소하기 위해 이진 시퀀스를 사용하여 저장한다. 이는 저장 공간 측면에서 상당한 우수성을 보여주나 키의 잦은 삽입 및 삭제 요구가 있을 경우 이진 비트열에 대한 시프트 연산이 요구되는 부담이 있다. 본 논문에서는 완전 이진 트라이 구조를 사용하여 CB 트리를 표현하는 방법을 제시하였다. 저장 공간의 크기가 증가되기는 하지만 키가 삽입되거나 삭제되어도 이진 비트열에 대한 시프트 연산이 필요하지 않은 장점이 있다.

  • PDF

Index Management Using Tree Structure in Edge Computing Environment (Edge Computing 환경에서 트리 구조를 이용한 인덱스 관리)

  • Yoo, Seung-Eon;Kim, Se-Jun;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.143-144
    • /
    • 2018
  • Edge Computing은 분담을 통해 네트워크의 부담을 줄일 수 있는 IoT 네트워크에 적합한 방법으로, 데이터를 전송하고 받는 과정에서 네트워크의 대역폭을 사용하는 대신 서로 연결된 노드들이 협력해서 데이터를 처리하고, 네트워크 말단에서의 데이터 처리가 허용되어 데이터 센터의 부담을 줄일 수 있다. 트리구조는 데이터 구조의 하나로, 데이터 항목의 한 묶음인 세그먼트를 나뭇가지처럼 연결한 것을 의미하여 분산된 데이터를 군집할 수 있다. 본 논문에서는 Edge Computing 환경에서 트리 구조를 이용하여 인덱스를 관리하는 모델을 알아보기 위해 이진 탐색 트리 중 AVL tree와 Paged Binary tree에 대해 서술하였다.

  • PDF

A Study on Efficient Decoding of Huffman Codes (허프만 코드의 효율적인 복호화에 관한 연구)

  • Park, Sangho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.850-853
    • /
    • 2018
  • In this paper, we propose a decoding method using a balanced binary tree and a canonical Huffman tree for efficient decoding of Huffman codes. The balanced binary tree scheme reduces the number of searches by lowering the height of the tree and binary search. However, constructing a tree based on the value of the code instead of frequency of symbol is a drawback of the balanced binary tree. In order to overcome these drawbacks, a balanced binary tree is reconstructed according to the occurrence probability of symbols at each level of the tree and binary search is performed for each level. We minimize the number of searches using a canonical Huffman tree to find level of code to avoid searching sequentially from the top level to bottom level.

Selection of Personalized Head Related Transfer Function Using a Binary Search tree (이진 탐색 트리를 이용한 개인화된 머리 전달 함수의 탐색)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.409-415
    • /
    • 2009
  • The head-related transfer function (HRTF), which has an important role in virtual sound localization has different characteristics across the subjects. Measuring HRTF is very time-consuming and requires a set of specific apparatus. Accordingly, HRTF customization is often employed. In this paper, we propose a method to search an adequate HRTF from a set of the HRTFs. To achieve rapid and reliable customization of HRTF, all HRTFs in the database are partitioned, where a binary search tree was employed. The distortion measurement adopted in HRTF partitioning was determined in a heuristic way, which predicts the differences in perceived sound location well. The DC-Davis CIPIC HRTF database set was used to evaluate the effectiveness of the proposed method. In the listening test, where 10 subjects were participated, the stimuli filtered by the HRTF obtained by the proposed method were closer to those by the personalized HRTF in terms of sound localization. Moreover, performance of the proposed method was shown to be superior to the previous customization method, where the HRFT is selected by using anthropometric data.

Enhanced bit-by-bit binary tree Algorithm in Ubiquitous ID System (Ubiquitous ID 시스템에서의 Enhanced bit-by-bit 이진 트리 알고리즘)

  • 최호승;김재현
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.55-62
    • /
    • 2004
  • This paper proposes and analyzes two anti-collision algorithms in Ubiquitous ID system. We mathematically compares the performance of the proposed algorithms with that of binary search algorithm slotted binary tree algorithm using time slot, and bit-by-bit binary tree algorithm proposed by Auto-ID center. We also validated analytic results using OPNET simulation. Based on analytic result comparing the proposed Modified bit-by-bit binary tree algorithm with bit-by-bit binary tree algorithm which is the best of existing algorithms, the performance of Modified bit-by-bit binary tree algorithm is about 5% higher when the number of tags is 20, and 100% higher when the number of tags is 200. Furthermore, the performance of proposed Enhanced bit-by-bit binary tree algorithm is about 335% and 145% higher than Modified bit-by-bit binary tree algorithm for 20 and 200 tags respectively.

Enhancement of HCB Tree for Improving Retrieval Performance and Dynamic Environments (검색 성능 향상과 동적 환경을 위한 HCB 트리의 개선)

  • Kim, Sung Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.365-371
    • /
    • 2015
  • CB tree represents the binary trie by a compact binary sequence. However, retrieval time grows fast since the more keys stored in the trie, longer the binary sequences are. In addition it is inefficient for frequent key insertion/deletion. HCB tree is a hierarchical CB tree consisting of small binary tries. However it can not avoid shift operations and have to scan an additional table to refer child or parent trie. In order to improve retrieval performance and avoid shift operations when keys are inserted or deleted, we in this paper represent each separated trie by a full binary trie and then assign the unique identifier to it. Finally the theoretical evaluations show that both the proposed approach and HCB tree provides better than CB tree for key retrieval. The proposed approach shows the highest performance in case of key insertion/deletion and moreover requires only 71%~89% of storage as compared with CB tree.

Performance Analysis of Tag Identification Algorithm in RFID System (RFID 시스템에서의 태그 인식 알고리즘 성능분석)

  • Choi Ho-Seung;Kim Jae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.47-54
    • /
    • 2005
  • This paper proposes and analyzes a Tag Anti-collision algorithm in RFID system. We mathematically compare the performance of the proposed algorithm with existing binary algorithms(binary search algorithm, slotted binary tree algorithm using time slot, and bit-by-bit binary tree algorithm proposed by Auto-ID center). We also validated analytic results using OPNET simulation. Based on analytic result, comparing the proposed Improved bit-by-bit binary tree algerian with bit-by-bit binary tree algorithm which is the best of existing algorithms, the performance of Improved bit-by-bit binary tree algorithm is about $304\%$ higher when the number of tags is 20, and $839\%$ higher when the number of tags is 200.