• Title/Summary/Keyword: 이진분류

Search Result 610, Processing Time 0.031 seconds

Extracting Land Cover Map and Boundary Line between Land and Sea from Hyperspectral Imagery (하이퍼스펙트럴 영상으로부터 객체기반 영상분류방법에 의한 토지피복도 및 수애선 추출)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Joo, Young-Don;Han, Seung-Hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.69-70
    • /
    • 2014
  • 연안지역에 대한 항공 하이퍼스펙트럴 영상으로부터 객체기반 분류방법을 이용하여 토지피복분류를 수행하고 기존에 주로 사용되어온 화소기반 분류기법에 의한 결과와 비교하였으며, 생성된 토지피복도로부터 해륙경계선인 수애선벡터를 용이하게 추출하는 방법을 제시하였다.

  • PDF

Effective Fingerprint Classification with Dynamic Integration of OVA SVMs (OVA SVM의 동적 결합을 이용한 효과적인 지문분류)

  • Hong Jin-Hyuk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.883-885
    • /
    • 2005
  • 지지 벡터 기계(Support Vector Machine: SVM)를 이용한 다중부류 분류기법이 최근 활발히 연구되고 있다. SVM은 이진분류기이기 때문에 다중부류 분류를 위해서 다수의 분류기를 구성하고 이들을 효과적으로 결합하는 방법이 필요하다. 본 논문에서는 기존의 정적인 다중분류기 결합 방법과는 달리 포섭구조의 분류모델을 확률에 따라 동적으로 구성하는 방법을 제안한다. 확률적 분류기인 나이브 베이즈 분류기(NB)를 이용하여 입력된 샘플의 각 클래스에 대한 확률을 계산하고, OVA (One-Vs-All) 전략으로 구축된 다중의 SVM을 획득된 확률에 따라 포섭구조로 구성한다. 제안하는 방법은 OVA SVM에서 발생하는 중의적인 상황을 효과적으로 처리하여 고성능의 분류를 수행한다. 본 논문에서는 지문분류 문제에서 대표적인 NIST-4 지문 데이터베이스를 대상으로 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.8\%$의 분류율을 획득하였으며, 기존의 결합 방법인 다수결 투표(Majority vote), 승자독식(Winner-takes-all), 행동지식공간 (Behavior knowledge space), 결정템플릿(Decision template) 등보다 높은 성능을 확인하였다.

  • PDF

Data Acquisition System Using the Second Binary Code (2차원 부호를 이용한 정보 획득 시스템)

  • Kim, In-Kyeom
    • The Journal of Information Technology
    • /
    • v.6 no.1
    • /
    • pp.71-84
    • /
    • 2003
  • In this paper, it is presented the efficient system for data recognition using the proposed binary code images. The proposed algorithm finds the position of binary image. Through the process of the block region classification, it is classified each block with the edge region using the value of gray level only. Each block region is divided horizontal and vertical edge region. If horizontal edge region blocks are classified over six blocks in any region, the proposed algorithm should search the vertical edge region in the start point of the horizontal edge region. If vertical edge region blocks were found over ten blocks in vertical region, the code image would found. Practical code region is acquired from the rate of the total edge region that is computed from the binary image that is processed with the average value. In case of the wrong rate, it is restarted the code search in the point after start point and the total process is followed. It has a short time than the before process time because it had classified block information. The block processing is faster thant the total process. The proposed system acquires the image from the digital camera and makes binary image from the acquired image. Finally, the proposed system extracts various characters from the binary image.

  • PDF

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Gender Prediction and Precision Inference Method based on the naive Bayesian (나이브 베이지안에 기반한 성별 예측 및 정확률 추론 기법)

  • Kwon, TaeWon;Lee, Euijong;Baik, Doo-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.588-590
    • /
    • 2016
  • 사용자의 성별은 기본적이면서도 중요한 마케팅 데이터다. 그러나 최근에는 개인정보보호 강화 추세로, 회원가입 시 성별이나 나이 등의 세부 정보를 입력하지 않는 간편 가입이 많아졌다. 이러한 입력되지 않은 정보 추출을 위해 성별 예측 연구의 필요성이 증가되었다. 성별이 입력된 사용자의 정보를 바탕으로 성별이 입력되지 않은 사용자의 성별을 예측하는 기존 연구가 다양한 방법으로 진행되어왔고, 우수한 식별이 가능한 기법들은 이진분류기인 SVM을 기반으로 한 연구가 다수 존재한다. 그러나 SVM 알고리즘은 이진 분류만 가능하기 때문에 성별예측에 대한 정확률은 알 수가 없다. 성별예측의 정확률을 활용하면 부정확한 분류를 예방할 수 있으며 상품추천의 가중치로 사용 될 수 있다. 본 연구는 확률을 기반으로 하여 정확률을 추론 가능한 나이브 베이지안을 응용한다. 그리고 데이터 집합 사례를 균형있게 늘려주는 SMOTE기법을 이용해 클래스 불균형 문제를 개선했으며 또한 성별 예측의 특성에 맞게 노이즈를 제거하고, 성별 분류에 확정적인 아이템에 가중치를 적용했다. 더불어 제안 방법을 실제 데이터에 적용시켜 우수성을 입증하였다.

Classification of ratings in online reviews (온라인 리뷰에서 평점의 분류)

  • Choi, Dongjun;Choi, Hosik;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.845-854
    • /
    • 2016
  • Sentiment analysis or opinion mining is a technique of text mining employed to identify subjective information or opinions of an individual from documents in blogs, reviews, articles, or social networks. In the literature, only a problem of binary classification of ratings based on review texts in an online review. However, because there can be positive or negative reviews as well as neutral reviews, a multi-class classification will be more appropriate than the binary classification. To this end, we consider the multi-class classification of ratings based on review texts. In the preprocessing stage, we extract words related with ratings using chi-square statistic. Then the extracted words are used as input variables to multi-class classifiers such as support vector machines and proportional odds model to compare their predictive performances.

SOM-based Combination Method of OVA SVMs for Effective Fingerprint Classification (효과적인 지문분류를 위한 SOM기반 OVA SVM의 결합 기법)

  • Hong Jin-Hyuk;Min Jun-Ki;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.622-624
    • /
    • 2005
  • 대규모 지문인식 시스템에서 비교해야할 지문의 수를 줄이기 위해서 지문분류는 필수적인 과정이다. 최근 이진분류기인 지지 벡터 기계(Support Vector Machine: SVM)를 이용한 지문분류 기법이 많이 연구되고 있다. 본 논문에서는 다중부류 지문분류에 적합하도록 자기 구성 지도(Self-Organizing Map:SOM)를 이용하여 OVA(One-Vs-All) SVM들을 결합하는 지문분류 기법을 제안한다. SOM을 이용하여 OVA SVM들을 동적으로 결합하기 위한 결합 지도를 생성하여 지문분류 성능을 높인다. 지문분류에 있어 대표적인 NIST-4 지문 데이터베이스를 대상으로 Jain이 구축한 FingerCode 데이터베이스에 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.5\%$의 분류율을 획득하였으며, 기존의 결합 방법인 승자독식(Winner-takes-all)과 다수결 투표(Majority vote)보다 높은 성능을 확인하였다.

  • PDF

Text Categorization Based on the Maximum Entropy Principle (최대 엔트로피 기반 문서 분류기의 학습)

  • 장정호;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.57-59
    • /
    • 1999
  • 본 논문에서는 최대 엔트로피 원리에 기반한 문서 분류기의 학습을 제안한다. 최대 엔트로피 기법은 자연언어 처리에서 언어 모델링(Language Modeling), 품사 태깅 (Part-of-Speech Tagging) 등에 널리 사용되는 방법중의 하나이다. 최대 엔트로피 모델의 효율성을 위해서는 자질 선정이 중요한데, 본 논문에서는 자질 집합의 선택을 위한 기준으로 chi-square test, log-likelihood ratio, information gain, mutual information 등의 방법을 이용하여 실험하고, 전체 후보 자질에 대한 실험 결과와 비교해 보았다. 데이터 집합으로는 Reuters-21578을 사용하였으며, 각 클래스에 대한 이진 분류 실험을 수행하였다.

  • PDF

Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification (GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법)

  • Cho, Kyu-Cheol;Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.167-175
    • /
    • 2007
  • Fuzzy logic is used to represent qualitative knowledge and provides interpretability to a controlling system model in bioinformatics. This paper focuses on a bioinformatics data classification which is an important bioinformatics application. This paper reviews the two traditional controlling system models The sequence-based threshold controller have problems of optimal range decision for threshold readjustment and long processing time for optimal threshold induction. And the binary-based threshold controller does not guarantee for early system stability in the GPCR data classification for optimal threshold induction. To solve these problems, we proposes a fuzzy-based threshold controller for ART1 clustering in GPCR classification. We implement the proposed method and measure processing time by changing an induction recognition success rate and a classification threshold value. And, we compares the proposed method with the sequence-based threshold controller and the binary-based threshold controller The fuzzy-based threshold controller continuously readjusts threshold values with membership function of the previous recognition success rate. The fuzzy-based threshold controller keeps system stability and improves classification system efficiency in GPCR classification.

  • PDF