• Title/Summary/Keyword: 이중 루프 제어

Search Result 52, Processing Time 0.028 seconds

A dual-loop boost-converter LED driver IC with temperature compensation (온도 보상 및 듀얼 루프를 이용한 부스트 컨버터 LED 드라이버 IC)

  • Park, Ji-Hoon;Yoon, Seong-Jin;Hwang, In-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.29-36
    • /
    • 2015
  • This paper presents an LED backlight driver IC consisting of three linear current regulators and an output-voltage regulation loop with a self-adjustable reference voltage. In the proposed LED driver, the output voltage is controlled by dual feedback loops. The first loop senses and controls the output voltage, and the second loop senses the voltage drop of the linear current regulator and adjusts the reference voltage. With these feedback loops, the voltage drop of the linear current regulator is maintained at a minimum value, at which the driver efficiency is maximized. The output of the driver is a three-channel LED setup with four LEDs in each channel. The luminance is adjusted by the PWM dimming signal. The proposed driver is designed by a $0.35-{\mu}m$ 60-V high-voltage process, resulting in an experimental maximum efficiency of approximately 85%.

A 0.4-2GHz, Seamless Frequency Tracking controlled Dual-loop digital PLL (0.4-2GHz, Seamless 주파수 트래킹 제어 이중 루프 디지털 PLL)

  • Son, Young-Sang;Lim, Ji-Hoon;Ha, Jong-Chan;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.65-72
    • /
    • 2008
  • This paper proposes a new dual-loop digital PLL(DPLL) using seamless frequency tracking methods. The dual-loop construction, which is composed of the coarse and fine loop for fast locking time and a switching noise suppression, is used successive approximation register technique and TDC. The proposed DPLL in order to compensate the quality of jitter which follows long-term of input frequency is newly added cord conversion frequency tracking method. Also, this DPLL has VCO circuitry consisting of digitally controlled V-I converter and current-control oscillator (CCO) for robust jitter characteristics and wide lock range. The chip is fabricated with Dongbu HiTek $0.18-{\mu}m$ CMOS technology. Its operation range has the wide operation range of 0.4-2GHz and the area of $0.18mm^2$. It shows the peak-to-peak period jitter of 2 psec under no power noise and the power dissipation of 18mW at 2GHz through HSPICE simulation.

Ultra precision positioning system for Servo Motor-Piezo actualtor using dual servo loop (이중서보제어루프를 통한 서보모터-압전구동기의 초정밀위치결정 시스템)

  • 이동성;박종호;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.437-441
    • /
    • 1995
  • In this paper, the ultra precision positioning system for servo motor and piezo actuator using dual servo loop control has been developed. For positioning system having long distance with ultra precision, the combination of global stage and micro stage is required. Servo moter and ball screw are used as a master stage and piezo acuator as a fine stage. By using this system, an positional precision witin .+-. 30nm has been achieved at dual servo loop control. When using micro stage, an positional precision within .+-. 10nm has been achieved. This result can be applied to develop semiconductor equipment such as wafer stepper.

  • PDF

Ultra Precision Positining System for Servo Motor-piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation (이중서보제어루프와 디지털 필터를 통한 서보모터-업전구동기의 초정밀위치결정 시스템 개발)

  • Lee, Dong-Sung;Park, Jong-Ho;Park, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.154-163
    • /
    • 1999
  • In this paper, an ultra precision positioning system has been developed using dual servo loop control. For positioning system having long distance with ultra precision , the combination of global stage and micro stage was required. A servo motor based ball screw is used as a global stage and the piezo actuator as a micro stage. For the improvement of positional precision, the digital Chebyshev filter is implemented in the developed to dual servo system. Therefore, the positional repeatability has been achieved within ${\pm}$ 10 mm, and this technique can be applied to develop precision semiconductor equipments such as lithography steppers and probers.

  • PDF

Development of the Control Algorithm for the Small PEM Fuel Cell Stack (소형 PEM 연료전지 스택의 제어 알고리즘 개발)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.134-141
    • /
    • 2010
  • Small PEM (Proton Exchange Membrane) fuel cell systems do not require humidification and have great commercialization possibilities. However, methods for controlling small PEM fuel cell stacks have not been clearly established. In this paper, a control method for small PEM fuel cell systems using a dual closed loop with a static feedforward structure is defined and realized using a DSP (Digital Signal Processor). The fundamental elements that need to be controlled in fuel cell systems include the supply of air and hydrogen, water management inside the stack, and heat management of the stack. For small PEM fuel cell stacks operated without a separate humidifier, fans are essential for air supply, heat management, and water management of the stack. A purge valve discharges surplus water from the stack. The proposed method controls the fan using double control loops to quicken transient response of the fan thereby improving the supply rate of air. Feedback control to compensate for the voltage change in fuel cell stack improves the response characteristics in fuel cell to load variations. The feasibility of proposed method was proved by the experiments with a 60W small PEM fuel cell system and operation of a notebook computer using this system.

Design of Reconfigurable Flight Control Law Using Neural Networks (신경회로망을 이용한 재형상 비행제어법칙 설계)

  • 김부민;김병수;김응태;박무혁
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.35-44
    • /
    • 2006
  • When control surface failure occurs, it is conventional to correct a current control or to transform to other control. In this paper, instead of adopting a conventional way, a reconfiguration method which compensate the failure with alternative control surface deflection, depending on the level of failure, by using neural network and PCH(Pseudo-Control Hedging). The Conroller is designed of inner-loop(SCAS : Stability Command Augmentation System) with DMI(Dynamic Model Inversion) and outer-loop with Y axis acceleration feedback for a coordinate turn. Additionally, double PCH method was adopted to prevent actuator saturation and input command was generated to compensate for failure. At the end, The feasibility of the method is validated with randomly selected failure scenarios.

Design of Two-Inductor Loaded Small Loop Antennas Using Genetic Algorithm (유전 알고리즘을 이용한 인덕터 장하 소형 루프 안테나 설계)

  • Cho, Gyu-Yeong;Kim, Jae-Hee;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1021-1030
    • /
    • 2009
  • We propose optimization method of two-inductor loaded small loop antennas using simple genetic algorithm. To optimize the loop antennas for the RFID and the mobile phone band, we changed positions and values of the two inductors in the loop antenna. Visual basic was used to make genetic algorithm and to calculate fitness values by controlling the commercial EM software. The bandwidth of the optimized RFID loop antenna is 10 MHz at the center frequency of 922 MHz and that of the mobile phone antenna are 84 MHz and 266 MHz at the center frequency of 948 MHz(GSM band) and 1.81 GHz(DCS band), respectively.

Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS (PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교)

  • Kim, Dong-Hwan;Jung, Seung-Hwan;Song, Seung-Ho;Choi, Ju-Yeop;Choi, Ick;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.

Vibration-free Control of Double Integrator Typed Motor via Loop Transfer Recovery (루프 전달 회복을 통한 이중 적분 모터의 무진동 제어)

  • Suh, Sang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.900-906
    • /
    • 2010
  • This note proposes vibration-free motor control through modified LQG/LTR methodology. A conventional LQG/LTR method is a design tool in the frequency domain. However, unlike the conventional one, the proposed one is a time response based design method. This feature is firstly designed by parameterized settling time control gain through the target loop design procedure and the feature is secondly realized by loop transfer recovery. In order to show convergence to the target loop transfer functions, asymptotic behaviors of the open and the closed loop transfer functions are shown. At the conclusion, it is verified that the proposed method is robustly stable to parametric uncertainties through ${\mu}$-plot.

Study of Speed Profile for Dynamic Stability of EOTS (EOTS의 동적 안정성을 위한 속도 프로파일에 대한 연구)

  • Gyu-Chan Lee;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.919-925
    • /
    • 2023
  • Modern drones are equipped with miniaturized mission equipment capable of performing various tasks such as surveillance and reconnaissance. Consequently, these mission equipment are exposed to disturbances like wind loads and motor rotations, which can lead to instability in the operation of the Electro-Optical Targeting System (EOTS). Specifically, simple step inputs for changing the line of sight in EOTS can cause abrupt changes in speed, inducing overshoot and potentially creating instability along with other disturbances. To address this, a velocity profile was designed so that the angular velocity moves in a trapezoidal shape when changing the EOTS line of sight. A Double-loop controller was designed to apply this profile as an input to the external loop receiving position feedback. The system's stability was then compared, and the velocity profile was optimized within a stable range by varying maximum speed and acceleration.