• Title/Summary/Keyword: 이중 결정 X-선 회절

Search Result 34, Processing Time 0.022 seconds

Growth and optical properties for MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot wall epitaxy법에 의한 MgGa2Se4 단결정 박막 성장과 광학적 특성)

  • Moon, Jong-Dae;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. The crystal structure of these compounds has a rhombohedral structure with lattice constants $a_0=3.953\;{\AA}$, $c_0=38.890\;{\AA}$. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of $MgGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method were $6.21{\times}10^{18}\;cm^{-3}$ and 248 $cm^2/v{\cdot}s$ at 293 K, respectively. The optical absorption of $MgGa_2Se_4$ single crystal thin films was investigated in the temperature range from 10 K to 293 K. The temperature dependence of the optical energy gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's equation, $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=2.34\;eV$, ${\alpha}=8.81{\times}10^{-4}\;eV/K$ and ${\beta}=251\;K$, respectively.

Magnetic Properties of Fe-Zr-N Soft Magnetic Thin Films (Fe-Zr-N 연자성 박막의 자기적 성질)

  • 김택수;김종오;이중환;윤선진;김좌연
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.317-322
    • /
    • 1996
  • Thin films of Fe-Zr-N were fabricated by rf magnetron reactive sputtering method. The saturation magnetization and coercivity as functions of annealing temperature and partial pressure of nitrogen gas, effective permeability at high frequencies, and thermal stability were investigated. Magnetic softness was exhibited in the composition range of $Fe_{72-78}Zr_{7-10}N_{15-18}$ which was boundary between polycrystalline and amorphous structure. These films exhibited magnetic softness with saturation magentic flux density of 1.55 T and effective permeability of about 3000 at 1 MHz. These films also exhibited thermal stability by sustaining effective permeability of 2500 or above as the temperature was raised to $550^{\circ}C$. It is asswned that good magnetic softness is obtained because grain growth of $\alpha-Fe$ is prohibited due to the precipitation of ZrN nanocrystals. The grain sizes of $\alpha-Fe$ films were $40~50\AA$ and the grain sizes of ZrN nanocrystals were $10~15\AA$.

  • PDF

Synthesis and Characterization of Low-Dimensional Chalcogenide Compound via a Molten Salt Method (용융염법을 이용한 저차원 구조의 금속 칼코겐 화합물의 합성 및 구조 특성연구)

  • Choi, Duc-Su;Yun, Hye-Sik;Oh, Hwa-Suk;Kim, Don;Yun, Ho-Seop;Park, Youn-Bong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.504-509
    • /
    • 2004
  • The reaction of Cu metal with mixed alkali metal polyselenide flux ($KNaSe_x$) produced large plate-like crystals of $KCu_4Se_3$. The structure of $KCu_4Se_3$, determined with X-ray single crystal diffraction techniques, is tetragonal (P4/mmm, a=4.013(1))${\AA}$, c=9.712(1))${\AA}$, z=1, R=6.7%). The structure is composed $[Cu_4Se_3]_n^{n-}$double layers which are made of fused anti PbO-type Cu2Se2 layers. Temperature variable resistivity measurement on single crystal of $KCu_4Se_3$ shows metallic behavior ranging from $1.8{\times}10^{-4}{\Omega}{\cdot}cm$ (at 300 K) to $1.0{\times}10^{-6}{\Omega}{\cdot}cm$ (at 20 K).

Crystal Structure of Dehydrated Partially Cobalt(II)-Exchanged Zeolite X, $Co_{41}Na_{10}-X$ (부분적으로 $Co^{2+}$ 이온으로 치환된 제올라이트 X, $Co_{41}Na_{10}-X$를 탈수한 결정구조)

  • Jang, Se-Bok;Jeong, Mi-Suk;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The crystal structure of dehydrated, partially Co(II)-exchanged zeolite X, stoichiometry Co2+Na+-X (Co41+Na10Si100Al92O384) per unit cell, has been determined from three-dimensional X-ray diffraction data gathered by counter methods. The structure was solved and refined in the cubic space group Fd3:α=24.544(1)Å at 21(1)℃. The crystal was prepared by ion exchange in a flowing stream using a solution 0.025 M each in Co(NO3)2 and Co(O2CCH3)2. The crystal was then dehydrated at 380℃ and 2×10-6 Torr for two days. The structure was refined to the final error indices, R1=0.059 and R2=0.046 with 211 reflections for which I > 3σ(I). Co2+ ions and Na+ ions are located at the four different crystallographic sites. Co2+ ions are located at two different sites of high occupancies. Sixteen Co2+ ions are located at the center of the double six-ring (site I; Co-O = 2.21(1)Å, O-Co-O = 90.0(4)°) and twenty-five Co2+ ions are located at site II in the supercage. Twenty-five Co2+ ions are recessed 0.09Å into the supercage from its three oxygen plane (Co-O = 2.05(1)Å, O-Co-O = 119.8(7)°). Na+ ions are located at two different sites of occupandies. Seven Na+ ions are located at site II in the supercage (Na-O = 2.29(1)Å, O-Na-O = 102(1)°). Three Na+ ions are statistically distribyted over site III, a 48-fold equipoint in the supercages on twofold axes (Na-O = 2.59(10)Å, O-Na-O = 69.0(3)°). Seven Na+ ions are recessed 1.02Å into the supercage from the three oxygen plane. It appears that Co2+ ions prefer sites I and II in order, and that Na+ ions occupy the remaining sites, II and III.

  • PDF

Properties of Freestanding GaN Prepared by HVPE Using a Sapphire as Substrate (사파이어를 기판으로 이용하여 HVPE법으로 제작한 Freestanding GaN의 특성)

  • Lee, Yeong-Ju;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.591-595
    • /
    • 1998
  • In this work, the freestanding GaN single crystalline substrates without cracks were grown by hydride vapor phase epitaxy (HVPE) and its some properties were investigated. The GaN substrate, having a current maximum size of 350 $\mu\textrm{m}$-thickness and 100$\textrm{mm}^2$ area, were obtained by HVPE growth of thick film GaN on sapphire substrate and subsequent mechanical removal of the sapphire substrate. A lattice constant of $C_o$= 5.18486 $\AA$ and a FWHM of DCXRD was 650 arcsec for the single crystalline GaN substrate. The low temperature PL spectrum consist of three excitonic emission and a deep D- A pair recombination at 1.8eV. The Raman E, (high) mode frequency was 567$cm^{-1}$ which was the same as that of strain free bulk single crystals. The Hall mobility and carrier concentration was 283$cm^3$<\ulcornerTEX>/ V.sand 1.1$\times$$10^{18}cm^{-3}$, respectively.

  • PDF

Formation of $CoSi_2$ Film and Double Heteroepitaxial Growth of $Si/epi-CoSi_2/Si$(111) by Solid Phase Epitaxy (고상 에피택시에 의한 초박막 $CoSi_2$ 형성과 $Si/epi-CoSi_2/Si$(111)의 이중헤테로 에피택셜 성장)

  • Choi, Chi-Kyu;Kang, Min-Sung;Moon, Jong;Hyun, Dong-Geul;Kim, Kun-Ho;Lee, Jeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • Epitaxial ultrathin films of $CoSi_2$ and double heteroepitaxial structure of Si/$CoSi_2$/Si(lll) were prepared on Si(111)-$7\times{7}$ substrate by in situ solid-phase epitaxy in a ultrahigh vacuum(LHV). The phase, chemical composition, crystallinity, and the microsructure of the Si/$CoSi_2$/Si(lll) interface were investigated by 2-MeV $^4He^{++}$ ion backscattering spectrometry, X-ray diffraction, and high-resolution transmission electron microscopy. The growth mode of the Co film was the Stransky-Krastanov type with texture when the substrate temperature was room temperature. A-type $CoSi_2$ ultrathin film was grown by deposition of about 50A Co on Si(ll1)-$7\times{7}$ substrate followed by in situ annealing at $700^{\circ}C$ for 10 min. The matching face relationships were $CoSi_2$[110]//Si[110] and $CoSi_2$(002)//Si(002) with no misorientation angle. The A-type $CoSi_2$/Si(lll) interface was abrupt and coherent. The best epi-Si/epi-$CoSi_2$2(A-type)/Si(lll) structure was obtained by deposition of Si film on the CoSii at $500^{\circ}C$ followed by in situ annealing at $700^{\circ}C$ for 10 min in UHV.

  • PDF

The study of growth and characterization of $AgInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)에 의한 $AgInSe_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.197-206
    • /
    • 1999
  • The stochiometric mixture of evaporating materials for the $AgInSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the $AgInSe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $C_0$ were 6.092 $\AA$ and 11.688 $\AA$, respectively. To obtain the single crystal thin films of AgInSe$_2$, the mixed crystal was deposited on thoroughly etched semi-insulator GaAs(100) substrate by HWE system. The source and substrate temperature were fixed to $610^{\circ}C$ and $450^{\circ}C$ respectively, and the thickness of the single thin films was obtained to 3.8 $\mu\textrm{m}$. The crystallization of single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray dirrfaction (DCXD). The Hall effect was measured by the method of van der Pauw and carrier density and mobility dependence on temperature were studied. The carrier density and mobility of $AgInSe_2$single crystal thin films deduced from Hall data are $9.58{\times}10^{22} electron/m^3,\; 3.42{\times}10^{-2}m^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $AgInSe_2$single crystal thin film, the spin orbit coupling $\Delta$So and the crystal field splitting $\Delta$Cr were obtained to 0.29 eV and 0.12 eV at 20 K respectively. From PL peaks measured at 20 K, 881.1 nm (1.4071 eV) and 882.4 nm (1.4051 eV) mean $E_x^U$ the upper polariton and $E_x^L$ the lower polariton of the free exciton $(E_x)$, also 884.1 nm (1.402 eV) express $I_2 peak of donor-bound exciton emission and 885.9 nm (1.3995 Ev) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 887.5 nm (1.3970 eV) was analyzed to be PL peak due to DAP.

  • PDF

Characterization of Synthesized Carbonate and Sulfate Green Rusts: Formation Mechanisms and Physicochemical Properties (합성된 탄산염 및 황산염 그린 러스트의 형성 메커니즘과 이화학적 특성 규명)

  • Lee, Seon Yong;Choi, Su-Yeon;Chang, Bongsu;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Carbonate green rust (CGR) and sulfate green rust (SGR) commonly occur in nature. In this study, CGR and SGR were synthesized through co-precipitation, and their formation mechanisms and physicochemical properties were investigated. X-ray diffraction (XRD) and Rietveld refinement showed both CGR and SGR with layered double hydroxide structure were successfully synthesized without any secondary phases under each synthetic condition. Refined structural parameters (unit cell) for two green rusts were a (=b) = 3.17 Å and c = 22.52 Å for CGR and a (=b) = 5.50 Å and c = 10.97 Å for SGR with the crystallite size 57.8 nm in diameter from (003) reflection and 40.1 nm from (001) reflections, respectively. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) results showed that both CGR and SGR had typical hexagonal plate-like crystal morphologies but their chemical composition is different in the content of C and S. In addition, Fourier transform infrared (FT-IR) spectroscopy analysis revealed that carbonate (CO32-) and sulfate (SO42-) molecules were occupied as interlayer anions of CGR and SGR, respectively. These SEM/EDS and FT-IR results were in good agreement with XRD results. Changes in the solution chemistry (i.e., pH, Eh and residual iron concentrations (Fe(II):Fe(III)) of the mixed solution) were observed as a function of the injection time of hydroxyl ion (OH-) into the iron solution. Three different stages were observed in the formation of both CGR and SGR; precursor, intermediator, and green rust in the formation of both CGR and SGR. This study provides co-precipitation methods for CGR and SGR in a way of the stable synthesis. In addition, our findings for the formation mechanisms of the two green rusts and their physicochemical properties will provide crucial information with researches and industrials in utilizing green rust.

Crystal Structures of Fully Dehydrated $Ca^{2+}$-Exchanged Zeolite X, $Ca_{46}-X$, and $Ca^{2+}$ and $K^+$-Exchanged Zeolite X, $Ca_{32}K_{28}-X$ ($Ca^{2+}$ 이온으로 완전히 치환된 제올라이트 X, $Ca_{46}-X$$Ca^{2+}$ 이온과 $K^+$ 이온으로 치환된 제올라이트 X, $Ca_{32}K_{28}-X$를 완전히 진공 탈수한 결정구조)

  • Jang, Se Bok;Song, Seong Hwan;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 1995
  • The crystal sructures of $X(Ca_{46}Al_{92}Si_{100}O_{384})$ and $Ca_{32}K_{28}-X(Ca_{32}K_{28}Al_{92}Si_{100}O_{384})$ dehydrated at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ Their structures were refined to the final error indices, R_1=0.096,\;and\;R_2=0.068$ with 166 reflections, and R_1=0.078\;and\;R_2=0.056$ with 130 reflections, respectively, for which I > $3\sigma(I).$ In dehydrated $Ca_{48}-X,\;Ca^{2+}$ ions are located at two different sites opf high occupancies. Sixteen $Ca^{2+}$ ions are located at site I, the centers of the double six rings $(Ca(1)-O(3)=2.51(2)\AA$ and thirty $Ca^{2+}$ ions are located at site II, the six-membered ring faces of sodalite units in the supercage. Latter $Ca^{2+}$ ions are recessed $0.44\AA$ into the supercage from the three O(2) oxygen plane (Ca(2)-O(2)= $2.24(2)\AA$ and $O(2)-Ca(2)-O(2)=119(l)^{\circ}).$ In the structure of $Ca_{32}K_{28}-X$, all $Ca^{2+}$ ions and $K^+$ ions are located at the four different crystallographic sites: 16 $Ca^{2+}$ ions are located in the centers of the double six rings, another sixteen $Ca^{2+}$ ions and sixteen $K^+$ ions are located at the site II in the supercage. These $Ca^{2+}$ ions adn $K^+$ ions are recessed $0.56\AA$ and $1.54\AA$, respectively, into the supercage from their three O(2) oxygen planes $(Ca(2)-O(2)=2.29(2)\AA$, $O(2)-Ca(2)-O(2)=119(1)^{\circ}$, $K(1)-O(2)=2.59(2)\AA$, and $O(2)-K(1)-O(2)=99.2(8)^{\circ}).$ Twelve $K^+$ ions lie at the site III, twofold axis of edge of the four-membered ring ladders inside the supercage $(K(2)-O(4)=3.11(6)\AA$ and $O(1)-K(2)-O(1)=128(2)^{\circ}).$

  • PDF

Energy band gap of $Zn_{0.86}Mn_{0.14}Te$ epilayer grown on GaAs(100) substrates (GaAs(100)기판 위에 성장된 $Zn_{0.86}Mn_{0.14}Te$에피막의 띠 간격 에너지)

  • 최용대;안갑수;이광재;김성구;심석주;윤희중;유영문;김대중;정양준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.122-126
    • /
    • 2003
  • In this study, $Zn_{0.86}Mn_{0.14}$Te epilayer of 0.7 $\mu\textrm{m}$-thickness was grown on GaAs(100) substrate by using hot wallepitaxy. GaAs(100) substrate was removed from $Zn_{0.86}Mn_{0.14}$Teepilayer by the selective etching solution. The crystal structure and the lattice constant of only Z $n_{0.86}$ M $n_{0.14}$Te epilayer were investigated to be zincblende and 6.140 $\AA$ from X-ray diffraction pattern, respectively. Mn composition x of $Zn_{1-x}Mn_x$Te epilayer was found to be 0.14 using this lattice constant and Vegard's law. The crystal quality of the epilayer was confirmed to be very good due to 256 arcsec-full-width at half-maximum of the double crystal rocking curve. The absorption spectra from the transmission ones were obtained to measure the band gap energy of $Zn_{0.86}Mn_{0.14}$Te epilayer from 300 K to 10 K. With the decreasing temperature,. strong absorption regions in the absorption spectra were shifted to higher energy side and the absorption peak meaning the free exciton formation appeared near the absorption edge. The band gap energy values of $Zn_{0.86}Mn_{0.14}$Te epilayer at 0 K and 300 K were found to be almost 2.4947 eV and 2.330 eV from the temperature dependence of the free exciton peak position energy of $Zn_{0.86}Mn_{0.14}$Te epilayer, respectively. The free exciton peak position energy of $Zn_{0.86}Mn_{0.14}$Te epilayer without GaAs substrate was larger 15.4 meV than photoluminescence peak position energy at 10 K. This energy difference between two peaks was analysed to be Stokes shift.