• Title/Summary/Keyword: 이중주파수 안테나

Search Result 221, Processing Time 0.022 seconds

The Design and Fabrication for Wireless Repeater Patch Antenna of Wide-band Dual polarization (광대역 이중편파 무선 중계기용 패치안테나 설계 및 제작)

  • Lee, Han-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1287-1292
    • /
    • 2012
  • In this paper, a dual polarization patch antenna operates at the wide bandwidth of 1.525GHz~1.665GHz was designed and fabricated. To obtain the wide bandwidth and high gain, increased height of air floor from GND was applied, and to get wide band axial ratio and high gain, parasitic patch was applied. The simulation and measurement showed good agreements, the VSWR was less than 1.9 at the frequency bandwidth, the return loss was less than -10dB, and the LHCP(Left Hand Circular Polarization) and RHCP(Right Hand Circular Polarization) isolation was less than -13dB at the frequency bandwidth.

Design of Dual-band Stacked Meander Line Antenna with Double Coupled Line (이중 커플드 라인을 이용한 이중 대역 적층형 미앤더 라인 안테나)

  • Jung, Jin-Woo;Seo, In-Jong;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.993-999
    • /
    • 2006
  • This paper presents the design simulation, implementation, and measurement of a miniaturized DCS, PCS / Satellite DMB dual-band stacked chip antenna with double coupled line for mobile communication terminals. A stacked meander is realized by using a via hole with height of 0.8 mm and a diameter of 0.35 mm to connect upper- and lower-layer meander sections for a reduction of the dimensions of the antenna. In addition the stacked meander chip antenna is extended by a double coupled-line to achieve two different radiation modes. A ratio of the first frequency and second frequency vary with the geometrical parameter of coupled lines. The fabricated antenna used FR-4 substrate with relative permittivity of 4.2. And its dimensions are $15.2{\times}7{\times}0.8mm^3$. The measured impedance bandwidth(VSRW<2) are 244 and 120 MHz at the operating frequency, respectively.

Development of Single Feed Antenna for Integrated Public Network and 5G Network Frequency Dual-band Cover (통합 공공망과 5G 주파수 이중대역 커버용 단일 급전 안테나 개발)

  • Hong, Ji-Hun;Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.233-240
    • /
    • 2019
  • In this paper, due to the development of 5G communication technology, an antenna capable of covering both LTE and 5G bands is currently needed. In addition, we designed and manufactured a single feed antenna for the integrated public network (LTE) and 5G frequency dual band cover to satisfy the frequency bandwidth of more than 10% in each band. The antenna designed by adopting the dipole of the basic dipole antenna in a planar structure is a form in which the radiating element is vertically extended at all of the 700 MHz antennas and folded into a 'ㄷ' shape. In addition, the radiating element of the 700MHz band serves as a reflector of the 3.5GHz band radiating element. As a result, the 700 MHz band -10 dB bandwidth 104 MHz(14.8%) and 3.5 GHz band -10 dB bandwidth 660 MHz(18.8%) were obtained and the radiation pattern characteristic resulted in gains of 8.46 dBi, beam width E-plane 55°, H-plane 81° and 3.5 GHz bands 6.14 dBi, beamwidth E-plane 79°, H-Plane 49°.

Design and Fabrication of Dual-Band Patch Antenna with Bridge for WLAN Applications (WLAN용 이중대역 브리지 패치 안테나설계 및 제작)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.547-551
    • /
    • 2010
  • In this paper, Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g(2.4GHz) and 802.11a(5.7GHz). Rectangular patch for 5.7GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4GHz frequency band with 4-bridges to obtain dual band operation in a antenna element. The proposed antenna has a low profile and is fed by $50{\Omega}$ coaxial line. The dielectric constant of the designed antenna substrate is 3.27. Two rectangular patches have each resonance frequencies that are 2.4GHz and 5.7GHz. A dual-band characteristic is shown as connecting two rectangular patch using four bridges. Also, the proposed antenna is shown input return loss that is below -10dB at 2.4GHz and 5.7GHz of WLAN(Wireless LAN).

Implementation of 433/856MHz Dual Band Antenna Using IFA Structure (IFA 구조를 이용한 433/865MHz 이중대역 안테나의 구현)

  • Kang, Sang-Won;Sung, Ji-Hyun;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.163-168
    • /
    • 2015
  • In this paper, 433/865MHz dual band antenna is proposed by using IFA structure of a PCB antenna, the performance was improved by changing of the space between the feed point and short strip, varying the gap between the radiator and the ground plane and adding the branch line in the proposed antenna. To confirm the characteristics of the antenna parameters, HFSS from ANSYS Inc. was used for the analysis. RFID frequency band of ISO-18000-7 is 433MHz and EU-RFID frequency band of ISO-18000-6 is from 865.5 to 867.5MHz. Each of the 433/865MHz bandwidth of the proposed antenna is 5.2MHz and 18.2MHz. The maximum 433MHz antenna gain is -5.74dBi, the maximum 865MHz antenna gain is -3.36dBi. The Jig size of the proposed antenna is $60{\times}44{\times}1mm$ and the size of the antenna area $44{\times}21mm$. The results proved the possibility of the practical use on 433/865MHz by using the IFA structure that came from comparing and analyzing the measured and simulated data of the antenna.

Broadband Dual Polarization Dipole Antenna with Feeding Structure of PCB Coupling (PCB 결합 급전구조를 가지는 광대역 이중편파 다이폴 안테나)

  • Park, Chul-Keun;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • This paper proposed a method of broadband method of dual polarized dipole antenna for 700 MHz band base station. The proposed antenna has a structure that PCB feeder is mounted on the metallic radiator. The design of radiator and feeder is optimized by using 3D EM simulation. The proposed antenna(bandwidth 31.6 %) is broadened over 12.2 % through the lower frequency band than reference antenna(bandwidth 19.4 %), however the size is not increased. Measured results of S-parameters, radiation patterns, and gain have a good agreement with simulation ones.

A Design and Implementation of a Monopole Antena with Arrow and Ribbon-Shaped for the WLAN Application (WLAN 시스템에 적용 가능한 Arrow와 Ribbon 모양을 갖는 모노폴 안테나 설계 및 제작)

  • Mun, Seung-Min;Kim, Gi-Rae;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.763-768
    • /
    • 2015
  • In this paper, a microstrip patch antenna with arrow and ribbon shape for WLAN was designed and manufactured. The antenna was designed on a FR-4 substrate that has a thickness of 0.8mm and a dielectric constant of 4.4. The substrate size is $50{\times}40mm^2$. A commercially available tool was used for simulation to get the optimized parameters and the optimized values were obtained by finding the parameters that act sensitively to the performance of the antenna. The proposed antenna was produced using the optimized values, and characteristics of return loss, gain and radiation pattern in WLAN bands were measured.

Printed Monopole Antenna of Dual band for Omni-diractional Radiation Patterns (전방향 복사패턴의 이중대역 프린트형 모노폴안테나)

  • 이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.99-104
    • /
    • 2003
  • We are designed and fabricated the Printed dual monopole antenna with CPW feeder for PCS and IMT2000 band. In this paper il proposed modified dual monopole antenna that is transform conventional monopole antenna to get dual band frequency. The dual monopole antennas had broad bandwidth and omni -directional radiation patterns in construct with conventional monopole antenna. On a monopole operated a stub to other monopole antenna, we could obtain easy an impedance matching. It is increased band width of impedance. The antenna bandwidth is about 150MHz(1.74 ∼1.89〔GHz〕)at 1$^{st}$ resonance frequency and 290MHz(1.95∼2.24GHz) at 2$^{nd}$ resonance frequency on VSWR(equation omitted)1.5 and then we can be got not only 1.75∼1.87〔GHz〕 PCS band but also 1.92∼2.17 〔GHz〕).GHz〕).

Modified Monopole Antenna for Multi resonance Wideband (다중 공진 광대역 수정된 모노폴안테나)

  • Cho, Tea-Il;Bum, Byung-Gyun;Lim, Seung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.53-57
    • /
    • 2008
  • This paper designed and fabricated the printed dual monopole antenna with CPW feeder for PCS and UWB(Ultra-Wide Band) band. In this paper, modified dual monopole antenna is proposed transform conventional monopole antenna to get dual band frequency. The dual monopole antennas have dual band, broad bandwidth and omni-directional radiation patterns, as it is the conventional monopole antenna. As one monopole operated a stub to match feed line with antenna, we are obtained easy an ideal impedance matching. It is increased band width of impedance. The antenna bandwidth is about 1350MHz (1.69~2.04[GHz]z]) at 1st resonance frequency, 2,670MHz (4.33~6[GHz]) at 2nd, resonance frequency, and, 3,980MHz (6.1~10.08[GHz]) at 3th resonance frequency on VSWR$$\leq_-$$2, and then we can be got not only 1.75~1.87 [GHz] PCS band but also, UWB band.

  • PDF

A signal Detection Technique based on Compressed Sensing for Full-Duplex Generalized Spatial Modulation Systems (전 이중방식 일반화된 공간변조 시스템을 위한 압축센싱기반 신호검출기법)

  • Park, Jeonghong;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.43-46
    • /
    • 2015
  • Recently, full-duplex communications has been considered as one of the most promising techniques for net-generation mobile communication system. In this paper, we propose a compressed sensing based signal detection technique for full-duplex generalized spatial modulation (FD-GSM) systems. In FD-GSM systems, some antennas are used for signal transmission according to input data and the otehrs are used for detecting signals received over the same frequency band. The self-interference (SI) is assumed to be completely removed by help for the recently proposed SI cancellation techniques. The proposed signal detection technique significantly outperforms the conventional ones in terms of symbol error rate (SER). We will investigate the optimal number of used antennas in FD-GSM systems.

  • PDF