• Title/Summary/Keyword: 이중적분필터

Search Result 4, Processing Time 0.025 seconds

Development of the Road Profiling System and Evaluation of Korean Roads Roughness Characteristics (도로면 측정 분석 시스템 개발 및 국내 도로면 특성평가 응용 연구)

  • 손성효;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.192-197
    • /
    • 2003
  • The ‘AEIPR’(Accelerometer Established Inertial Profiling Reference) method has been applied to measure the road profile. The dynamic road profiling method using AEIPR has the advantages of cost effectiveness, measuring speed and relatively high reliability. However, it is required to improve the double integration algorithm to get the measurement results with the accuracy of hither level. In the first part of this paper, the effective double integration algorithm is suggested and the ‘Road Profiler’ software is developed on the basis of the algorithm. Road profiling tests are performed using the developed ‘Road Profiler’ system on the specially designed tracks for the durability tests and the various types of pubic roads. Test results are shown and evaluated by the international road evaluation indicies and classification.

Design of a pen-shaped input device using the low-cost inertial measurement units (저가격 관성 센서를 이용한 펜 형 입력 장치의 개발)

  • Chang, Wook;Kang, Kyoung-Ho;Choi, Eun-Seok;Bang, Won-Chul;Potanin, Alexy;Kim, Dong-Yoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.247-258
    • /
    • 2003
  • In this paper, we present a pen-shaped input device equipped with accelerometers and gyroscopes that measure inertial movements when a user writes on 2 or 3 dimensional space with the pen. The measurements from gyroscope are integrated once to find the attitude of the system and are used to compensate gravitational effect in the accelerations. Further, the compensated accelerations are integrated twice to yield the position of the system, whose basic concept stems from the field of inertial navigation. However, the accuracy of the position measurement significantly deteriorates with time due to the integrations involved in recovering the handwriting trajectory This problem is common in the inertial navigation system and is usually solved by the periodic or aperiodic calibration of the system with external reference sources or other information in the filed of inertial navigation. In the presented paper, the calibration of the position or velocity is performed on-line and off-line. In the on-line calibration stage, the complementary filter technique is used, where a Kalman filter plays an important role. In the off-line calibration stage, the constant component of the resultant navigational error of the system is removed using the velocity information and motion detection algorithm. The effectiveness and feasibility of the presented system is shown through the experimental results.

Wave Height Measurement System Based on Wind Wave Modeling (풍랑 모델링을 기반으로 한 실시간 파고 측정 시스템)

  • Lee, Jung-Hyun;Lee, Dong-Wook;Heo, Moon-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.166-172
    • /
    • 2012
  • The standard wave height measurement system is usually based on spectrum analysis for measuring wave height. The spectrum analysis is complicated because of the FFT, and the FFT is not for real time processing since it requires the saved data segments. In this paper, we carried out the performance evaluation of real-time and simpler wave height measurement system using the kalman filter and inertial sensors. The kalman filter theory is complicated, but its algorithm is simpler than the FFT and the kalman filter is used to estimate wave height by integrating acceleration data. But the accumulated error is occurred when the acceleration data is integrated. We developed the algorithm using the wind wave characteristic to decrease the accumulated error. In this paper, the performance evaluation of the wave height measurement system is carried out for various wind wave conditions. Through the experiments, we verified that it shows high measurement performance with the 3.5% margin of error in wind wave condition.

Displacement Analysis of Structures using RTK-GPS/Accelerometer Integration Methods (RTK-GPS와 가속도계 통합계산을 통한 구조물의 변위 해석)

  • Hwang, Jin-Sang;Yun, Hong-Sic;Lee, Dong-Ha;Hong, Sung-Nam;Suh, Yong-Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.583-591
    • /
    • 2011
  • Accurate observation results of dynamic displacements are essential to the protection of civil structures. In this study, we evaluated the optimal methods of the RTK/GPS Accelerometer integration through comparison and analysis of several experiments results. Two methods will be used to calculate the dynamic displacements from the results of the acceleration data as well as two integration methods for measuring the dynamic, static, and quasi-static displacements by incorporating the displacement results from the RTK-GPS and Accelerometer. By using a Cantilever Beam and LVDT measurement, we were able to ensure that the different displacement comparisons would be reliable and accurate. As a results from experiments, the accelerometer processing method applied by use of accelerometers data was filtering with the double integral using FIR band-pass filter which is most optimal for assessing the dynamic displacements. Also, the integrated method using extracting substitution displacements is suitable for measuring synthetically the dynamic static and quasi-static displacements of civil structures with RTK-GPS and accelerometer.