• Title/Summary/Keyword: 이중배수체계 모형

Search Result 7, Processing Time 0.02 seconds

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

Analysis of Urban Inundation Considering Building Footprints Based on Dual-Drainage Scheme (건물의 영향을 고려한 이중배수체계기반 침수해석)

  • Lee, Jeong-Young;Jin, Gi-Ho;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.40-51
    • /
    • 2014
  • This study aims to investigate urban inundation considering building footprints based on dual-drainage scheme. For this purpose, LiDAR data is cultivated to generate two original data set in terms of DEM with $1{\times}1$ meter and building layer of the study drainage area in Seoul and then the building layer is overlapped as vector polygon with the mesh data with the same size as DEM. Then, terrain data for modeling were re-sampled to reduce resolution as $10{\times}10$ meters. As results, the simulated depth without considering building footprints has a tendency to underestimate the inundation depth compared to observed data analized by CCTV imagery. Otherwise, the simulation result considering building footprints revealed definitely higher fitness. The difference of inundation depth came from the variation of inundation volume which was relevant to inundation extent. If the building footprints are enlarged, the possible inundation depth is increased, which results in being inundation depth higher because hydrological conditions such as rainfall depth are conservational. Otherwise, according to comparison of inundation extents, there were no significant difference but the case of considering building footprint was revealed slightly higher fitness. Thus, it is concluded that the considering building footprint for inundation analysis of urban watershed should be required to improve simulation accuracy synthetically.

Risk assessment for inland flooding in a small urban catchment : Focusing on the temporal distribution of rainfall and dual drainage model (도시 소유역 내 내수침수 위험도 평가 : 강우 시간분포 및 이중배수체계 모형을 중심으로)

  • Lee, Jaehyun;Park, Kihong;Jun, Changhyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.389-403
    • /
    • 2021
  • In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.

Development of Urban and River Flood Simulation Model Using FEM (유한요소법을 적용한 내수 및 외수 침수해석 모형 개발)

  • Nam, Myeong-Jun;Lee, Jae-Young;Lee, Chang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.115-126
    • /
    • 2021
  • This study develops a simulation model that performs flood analysis considering both urban and river flood. For the analysis of river flood, this study considers river overflow by levee breach, and reflects the concept of the dual drainage systems for the analysis of urban flood. In relation to the surface flood analysis, FEM technique is applied to the flood diffusion analysis in order to conduct the flow analysis of urban and river flood simultaneously. For the verification of the model, it is first applied to the conceptual model, and then applied to the actual watershed. It is expected that this study will be able to reduce flood damage and to prepare effective countermeasures to reduce flood damage.

Analysis of Water Balance in Paddy Fields using Open Source SWMMModel (Open source SWMM모형을 활용한 논배수로 물수지 분석)

  • Kim Beom gu;Choo In Kyo;Kareem Kola Yusuff;Jung Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.403-403
    • /
    • 2023
  • 도시화로 인한 생활, 공업, 농업용수의 수요는 증가하지만, 이를 해결하기 위한 댐 건설은 생태계의 단절, 수몰 지역 생성 등의 이유로 비판적인 여론이 많아 신규 수자원 확보가 어려워지고 있다. 따라서 우리는 신규 수자원을 확보하기보다 기존 수자원의 물관리 체계를 개선하고 합리적인 물 배분 기술을 개발할 필요가 있다. 이중 농업용수의 회귀 수량에 대하여 알아볼 필요가 있다. 수리 시설물에서 공급된 농업용수는 전량 작물에 의해 소비되는 것이 아니며, 포장으로 공급되지 않고 용수로를 통해 배수되기도 한다. 포장으로 공급된 수량은 물꼬를 넘어 배수되기도 하고, 일부는 침투되어 지하수를 통해 흘러나가기도 한다. 이 와 같이, 농업용수 공급량 중 소모되지 않고 하천으로 유입되는 수량을 관계 회귀 수량이라 한다. 따라서 본연구에서는 농업에 소모되지 않고 하천으로 유입되는 회귀수량을 정확히 조절할 수 있도록 농업용수 회귀수량을 계산하는 모델을 구현하였다. SWMM(Storm Water Management Model)은 도로, 도랑, 관로, 초지 등 주로 도시지역의 강우-유출-지표면 유출을 해석하는 모델이며 농지의 수로네트워크 특성을 잘 반영할 수 있다는 장점이 있다. 이번 연구에서는 용수로를 개수로로 고려하여 테스트베드 모형을 구축할 것이다. SWMM은 농업용수 물순환 모의를 위해 이미 활용되고 있으나 논에서의 증산량이 미반영되며 수혜지역 내의 지하수위가 미반영 되는 등 정확한 물순환 모의를 위해서 한계점 개선이 필요하다. 이 한계점 개선을 위해서 회귀수량 공식을 c언어로 구현 후 EPA SWMM의 소스코드를 활용하여 회귀수량 추정이 가능한 SWMM을 구현하였다. 해당 연구를 통해 농업용수의 회귀수량을 계산하여 정확한 물수지 분석이 가능하여 농업지역의 수자원 확보에 도움을 줄 것이다.

  • PDF

An Analysis on Inundation Characteristics of Urban Watershed according to Variation in Return Period of Design Rainfall (설계 강우량의 재현빈도 변화에 따른 도시유역의 침수특성 분석)

  • Park, InHyeok;Ha, SungRyong
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2013
  • This study aims to investigate inundation characteristics such as inundated area, inundation depth according to variation in return period of design rainfall and to draw a comparison between the inundation characteristics by adapting design storm using dual-drainage model. Lidar data is used to construct terrain data with $1m{\times}1m$ resolution in Cheongju. The designed storm by return periods(10year, 30year, 50year and 200year) are acquired from Intensity Duration Frequency curve, which are distributed in 5 minutes interval using Huff's method. As a results, the inundation volume is linearly increased, but inundated area is gradually increased in accordance with swell of return period for design storm. On the other hands, as a result of calculating discharge capacity for each points, deficit of discharge capacity is not observed using designed storm of 10 year return period at every points. If the return period is increased up more than 10 years, both the deficit of discharge capacity for each PT and entire study area are enlarged drastically.

Generalization of Modified TOPMODEL for Rainfall-Runoff Analysis of Sulmachun Watershed (수정 TOPMODEL에 의한 유출해석과 일반화 (설마천 유역을 중심으로))

  • Lee, Hak-Su;Kim, Nam-Won;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.295-306
    • /
    • 2002
  • The modified TOPMODEL of two storage systems has been integrated to the generalized assumptions of decreasing hydraulic conductivity to vertical direction. Three different recharge functions were introduced to explore the impact of the macropore flow to vortical direction, the storage at the surface zone and the relative storage deficit of the soil matrix. Combinations of these approaches provide 30 type of the model structure for the hillslope hydrology. Developed models have been applied to several hydrologic events at the Sulmachun watershed. The performance evaluation with the Monte carlo simulation suggests that the exponential function of transmissivity reduction should be appropriate form for the physically -based hydrologic simulation on the Sulmachun watershed. It has been shown that the recharge function of macropore flow contributes to improve the predictability of the generalized version of modified TOPMODEL.