• Title/Summary/Keyword: 이중관 가스 벨로우즈

Search Result 2, Processing Time 0.022 seconds

A study on the optimization of manufacturing processes of double wall bellows for dual fuel engine I - Design optimization by buckling and stress analysis - (Dual Fuel 엔진용 이중관 벨로우즈 제작 공정의 최적화에 관한 연구 I - 좌굴해석 및 응력해석을 통한 설계 최적화 -)

  • Kim, Pyung-Su;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.499-503
    • /
    • 2016
  • Dual fuel engines are suitable for stricter regulations as they significantly decrease exhaust gas output. Hence, research and development of double wall bellows for dual fuel engines is important. In this study, optimum forming methods and welding conditions were derived to develop double wall bellows made of austenite stainless steel. The reliability of the prototypes was ensured by various performance evaluations. In this study, the buckling load and bellows stress were obtained by structural design, buckling, and stress analysis to design optimum bellows. As a result, the buckling load in the embossing shape of bellows increased by approximately 1.6 times, and no buckling and squirming occurred at 30.0 bar, which was twice that of the maximum design pressure.

Structural Evaluations of Bellows for a Gasgenerator Lox Shut-off Valve (가스발생기 산화제 개폐밸브용 벨로우즈 구조 평가)

  • Yoo, Jae-Han;Lee, Joong-Youp;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.279-282
    • /
    • 2011
  • The analysis and experimental results for the bellows of gasgenerator liquid oxygen shut-off valve are presented. The analyses are performed using EJMA (Expansion Joint Manufacturing Association) standard and the commercial FE (finite element) analysis program, Abaqus v6.9, at room and cryogenic temperatures. The results include the spring rate, the stress and the fatigue life of the bellows. The effects of the contact and material plasticity on the FE analysis results are also analyzed.

  • PDF