• Title/Summary/Keyword: 이종소재

Search Result 499, Processing Time 0.024 seconds

Effect of Oxygen Mixture Ratio on the Properties of ZnO Thin-Films and n-ZnO/p-Si Heterojunction Diode Prepared by RF Sputtering (산소 혼합 비율에 따른 RF 스퍼터링 ZnO 박막과 n-ZnO/p-Si 이종접합 다이오드의 특성)

  • Gwon, Iksun;Kim, Danbi;Kim, Yewon;Yeon, Eungbum;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.456-462
    • /
    • 2019
  • ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and $O_2$ mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and room-temperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when $O_2$ is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ${\pm}3V$ of the reverse and forward bias voltage is about $5.8{\times}10^3$, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.

Electrochemical Performances of Spherical Silicon/Carbon Anode Materials Prepared by Hydrothermal Synthesis (수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성)

  • Choi, Na Hyun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.326-332
    • /
    • 2021
  • In this study, a spherical carbon composite material containing nano-silicon was synthesized using hydrothermal synthesis, and coated with petroleum pitch to prepare an anode material to investigate the electrochemical characteristics. Hydrothermal synthesis was performed by varying molar concentration, and the pitch was coated using THF as an organic solvent to prepare a composite material. The physical properties of anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances were investigated by cycle, C-rate, cyclic voltammetry and electrochemical impedance tests in 1.0 M LiPF6 electrolyte (EC : DMC : EMC = 1 : 1 : 1 vol%). The pitch-coated silicon/carbon composite (Pitch@Si/C-1.5) with sucrose of 1.5 M showed a spherical shape. In addition, a high initial capacity of 1756 mAh/g, a capacity retention ratio of 82% after 50 cycles, and an excellent rate characteristic of 81% at 2 C/0.1 C were confirmed.

Electrical characteristics of Sn $O_{2}$Si heterojunction solar cells depending on annealing temperature (열처리온도에 따른 $SnO_2$/Si 이종접합 태양전지의 전기적 특성)

  • 이재형;박용관
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.481-489
    • /
    • 1994
  • The $SnO_2$/(n)Si solar cell was fabricated by electron beam evaporation method, and their properties were investigated. In proportion to increase of substrate and annealing temperature, the conductivity of $SnO_2$ thin film was increased, but its optical transmission decreases because of increasing optical absorption of free electrons in the thin film. $SnO_2$/Si Solar cell characteristics were improved by annealing, but the solar cells was deteriorated by heat treatment above 500[.deg. C]. The optimal outputs of $SnO_2$/Si solar cell through above investigations were $V_{\var}$:350[mV], $J_{sc}$ ;16.53[mA/c $m^{2}$], FF;0.41, .eta.=4.74[%]

  • PDF

Effects of Phosphorus Doping Concentration on the Oxidation Kinetics of Tungster Polycide ($\Pi$) (텅스텐 폴리사이드의 산화반응속도에 미치는 인 도핑 농도의 영향 $\Pi$)

  • 이종무;한석빈;임호빈;이종길
    • Electrical & Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.97-104
    • /
    • 1991
  • W/Si의 조성비가 2.6인 CVD텅스텐 실리사이드를 어닐링처리 하지 않고 바로 wet oxidation하여 polycide구조에서 다결정 실리콘 내의 인의 농도가 실리사이드의 산화반응 속도에 미치는 영향을 조사하여 직선-포물선적 속도법칙을 토대로 하여 분석 조사하였다. 텅스텐 실리사이드의 산화속도는 다결정 실리콘 내의 도편트 인의 농도가 증가함에 따라 증가하는 것으로 나타났다. 직선적 속도상수와 포물선적 속도상수 모두 인의 농도가 증가함에 따라 증가하는 경향을 보였다. 직선적 속도상수에 대한 활성화 에너지는 인의 농도가 증가함에 따라 감소하였으나 포물선적 속도상수에 대한 활성화 에너지는 인 농도와 무관한 것으로 나타났다.

  • PDF

Development of Thermoplastic-Thermoset Multi Component Injection Mold for a Waterproof Connector (방수커넥터용 열가소성-열경화성 이종소재 사출금형 개발)

  • Jung, T. S.;Choi, K. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.418-425
    • /
    • 2015
  • Based on eco-friendly advantages and the enhanced development in the chemical and physical characteristics, liquid silicone rubber (LSR) is widely used in producing precision parts in the automotive, medical, electronics, aeronautical and many other industries. In the current work, a thermoplastic-thermoset multi component injection molding (MCM) was developed for a waterproof automotive connector housing using PBT and LSR resins. Measurements of the rheological characteristics of PBT and LSR were made to improve the reliability of the numerical analysis for the multi component injection process. With the measured viscosity, pvT and curing data, numerical analysis of the multi cycle injection molding was conducted using simulation software (Sigma V5.0).

이종 금속 입자를 도핑한 이산화 티타늄박막의 굴절률 및 광학 특성 변화

  • Lee, Jae-Hyeok;Lee, Su-Min;Kim, Seon-Min;Seo, Mun-Seok;Sim, Gwon-U;Han, Jong-Hun;Kim, Tae-Geun;Jo, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.233-233
    • /
    • 2011
  • 건물 내부의 에너지 효율을 높이기 위해 창호의 단열 효율을 높이는 연구가 최근 큰 주목을 받고 있다. 특히 고굴절률과 저굴절률의 소재를 이용한 다층 박막 구조를 형성하여 높은 광투과율을 유지하면서도 적외선 에너지를 선택적으로 차단하는 창호의 연구가 이루어지고 있다. 본 연구에서는 고굴절률 특성을 가진 TiO2박막을 이종 금속 이온을 sol-gel법을 이용해 첨가 복합화한 후 유리 기판에 스핀 코팅후 열처리하여 성막하였다. 생성된 막은 atomic force microscopy (AFM), 전계 방출 전자현미경, UV-vis를 이용해 각각의 금속 이온에 대한 박막 표면의 형상 변화와 광학적 특성 변화를 확인하였다.

  • PDF

A Study on Weld Characteristics Analysis of Dissimilar Material (A105-A312) and Shape Friction Welding for Marine Plant Piping (해양 플랜트 배관용 이종 소재(A105-A312) 및 이종 형상 마찰용접의 용접 특성 분석에 대한 연구)

  • Kong, Yu-Sik;Kim, Tae Wan;Kwak, Jae Seob;Ahn, Yong Sik;Park, Young Whan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-35
    • /
    • 2020
  • This paper studies the main parameters of tube-to-bar dissimilar material and shape friction welding for piping materials. The weldability of joint parts was investigated with respect to tensile tests, micro-Vickers hardness, the bond of area, and optical microstructure. The specimens are tested as-welded. Optimal welding conditions are n = 2000 rpm, HP = 50 MPa, UP = 100 MPa, HT = 5 sec, and UT = 10 sec when the metal loss (Mo) is 11 mm. Moreover, the same two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or defects. Therefore, the expected result of dissimilar material friction welding includes a reduction of cost and material in the welding process.

Evaluation of Mechanical Properties with Tool Rotational Speed in Dissimilar Cast Aluminum and High-Strength Steel of Lap Jointed Friction Stir Welding (이종 주조알루미늄-고장력강의 겹치기 마찰교반접합에서 툴회전속도에 따른 기계적 특성평가)

  • Park, Jeong-Hun;Park, Seong-Hwan;Park, Soo-Hyeong;Joo, Young-Hwan;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.90-96
    • /
    • 2019
  • Recently, friction stir welding of dissimilar materials are one of the biggest issues in terms of light-weight and eco-friendly technology of the automotive, aircraft and ship industry. In this study, friction stir welding of dissimilar materials is introduced with different tool rotational speed. Materials used in experimentation consist of A357 gravity cast aluminum alloy and FB590 high-strength steel plates. Dissimilar materials of plate type are fabricated with width of 150mm, length of 300mm and thickness of 3mm and welding is carried out by the lap joint method. The correlation between probe length and mechanical properties were investigated according to rotational speed and welding speed at tool tilt angle 0 degree. Consequently, feasibility of FSWed dissimilar materials were successfully presented in case of cast aluminum and high-strength steel at lap joint method.

Study on Optimal Design of F-Apron of Vehicles by Multi-material Bonding (이종소재 접합을 이용한 차량 F-Apron 최적설계에 관한 연구)

  • Jung, Yoon-Soo;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.102-107
    • /
    • 2019
  • The vehicle market has developed environment-friendly vehicles to comply with fuel economy regulations and exhaust regulations that have become stricter and stricter over time. Many studies have been conducted to improve the travel performance and fuel economy of environment-friendly vehicles, and vehicle manufacturers have been studying how to manufacture light-weight vehicles in order to improve the fuel economy of both existing vehicles and the newer environment-friendly vehicles. Exemplary light-weight vehicle technologies optimizes the design of the vehicle body structure, which is a vehicle weight-reducing method that modifies component shapes or layouts to optimize the structure of the vehicle. In addition, the new process technology uses new light-weight and very strong materials, and not typical materials, to manufacture light-weight vehicles. This study aims at the optimal design of vehicle body structures using multi-materials for the Fender-Apron, which is an important frame member for the external front side of a vehicle body, by conducting FEA (Finite Element Analysis) and multi-material bonding.

Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery (침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.514-519
    • /
    • 2020
  • Graphite materials for lithium ion battery anode materials are the most commercially available due to their structural stability and low price. Recently, research efforts have been conducted on carbon coatings by improving side reactions at the edge site of carbon materials. The carbon coating process has classified into a CVD by chemical reaction, wet coating process with solvent and dry coating by mechanical impact. In this paper, the rapid crush/coating process was used to solve the problem of which only few parts of the carbon precursor (pitch) can be used and also environmental problems caused by solvent removal in the wet coating process. When the ratio of needle coke to pitch was 8 : 2 wt%, and the rapid crush/coating process was carried out, it was confirmed that the fracture surface was coated by pitch. The pitch-coated sample was treated at 2400 ℃ and 41.8% improvement in 10C/0.1C rate characteristic was observed. It is considered that the material simply manufactured through the simple crush/coating process can be used as an anode electrode material for a lithium ion battery.