• Title/Summary/Keyword: 이족보행로봇

Search Result 56, Processing Time 0.026 seconds

A Study on Computer Simulation of Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 시뮬레이션에 관한 연구)

  • Lee, Ki-Joo;Park, Joong-Kyung;Lim, Si-Hyung;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-911
    • /
    • 2007
  • Compliance of joints must be considered when we analyze dynamics of a multi-body system. If the virtual model for CAE(computer aided engineering) analysis does not consider compliance, the result of CAE analysis can be very different from the actual experimental result. Especially in a biped walking robot, the robot may lose walking stability due to the compliance in joints of a walking robot. This paper proposed a method applying a compliance of joints in the biped walking robot to a virtual model. Also, through the 3-D displacement measurement using a laser tracker, it was demonstrated that the virtual model considering the joint compliance could effectively simulate the nonlinear motion of the real model.

The Analysis of Impact Effect and Efficient Gait Generation Considering the Impact Effect for a Biped Robot (이족보행로봇의 충돌효과 해석과 이를 고려한 효율적인 걸음걸이의 생성)

  • Kim, Hong-Ryeol;Kim, Dong-Jun;Kim, Dae-Won;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.98-100
    • /
    • 1997
  • This paper proposes a mathematical model of impact force generated by collision between landing foot and ground, by which a dynamic analysis and a supplementation of existing stability criteria are made. By using the proposed dynamic analysis, an energy-optimized gaital algorithm is proposed. To prove the effectiveness of the algorithm, simulation results are shown compared to the result of previous gaital algorithm.

  • PDF

Analytic Solution for Stable Bipedal Walking Trajectory Generation Using Fourier Series (푸리에 급수를 이용한 이족보행로봇의 보행 궤적 해석해 생성)

  • Park, Ill-Woo;Back, Ju-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1216-1222
    • /
    • 2009
  • This article describes a simple method for generating the walking trajectory for the biped humanoid robot. The method used a simple inverted model instead of complex multi-mass model and a reasonable explanation for the model simplification is included. The problem of gait trajectory generation is to find the solution from the desired ZMP trajectory to CoG trajectory. This article presents the analytic solution for the bipedal gait generation on the bases of ZMP trajectory. The presented ZMP trajectory has Fourier series form, which has finite or infinite summation of sine and cosine functions, and ZMP trajectory can be designed by calculating the coefficients. From the designed ZMP trajectory, this article focuses on how to find the CoG trajectory with analytical way from the simplified inverted pendulum model. Time segmentation based approach is adopted for generating the trajectories. The coefficients of the function should be designed to be continuous between the segments, and the solution is found by calculating the coefficients with this connectivity conditions. This article also has the proof and the condition of solution existence.

The Control of a Bipedal Robot using ANFIS (ANFIS를 이용한 이족보행로봇 제어)

  • Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.523-525
    • /
    • 2004
  • Over the last few years, the control of bipedal robot has been considered a promising research field in the community of robotics. But the problems we encounter make the control of a bipedal robot a hard task. The complicated link connection of the bipedal robot makes it impossible to achieve its exact model. In addition, the joint velocity is needed to accomplish good control performance. In this paper a control method using ANFIS as an system approximator is purposed. First a model biped robot of a biped robot with switching leg influence is presented. Unlike classical method, ANFIS approximation error estimator is inserted in the system for tuning the ANFIS. In the entire system, only ANFIS is used to approximate the uncertain system. ANFIS tuning rule is given combining the observation error, control error and ANFIS approximation error. But this needs velocity information which is not available. So a practical method is newly presented. Finally, computer simulation results is presented to show this control method has good position tracking performance and robustness without need for leg switching acknowledgement.

  • PDF

Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot (이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현)

  • Lim, Dong-Cheol;Kuc, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

A study on the Obstacle Avoidance for a Biped Walking Robot Using Genetic-Fuzzy Algorithm (퍼지와 유전알고리즘을 이용한 이족보행로봇의 방해물 회피에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.304-306
    • /
    • 2001
  • This paper presents the obstacle avoidance of a biped walking robot using GA-Fuzzy algorithm. In the case of our previous studies the surface has been assumed to be flat. For the case of the environment with obstacles, however, the walking robot might be unnatural. Thus, we considered the surface contained obstacles that the robot can pass through. We propose the optimal leg trajectory data-base by using genetic algorithm and optimal leg trajectory movement about obstacles that exist in front of the robot using fuzzy approach. It is shown that the robot can move more naturally on the surface that contains obstacles.

  • PDF

A Design of Path Planning Algorithm for Biped Walking Robot in 3-D Obstacle Environment (3차원 장애물에서의 이족보행로봇을 위한 이동경로계획 알고리즘의 설계)

  • Min, Seung-Ki;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.576-580
    • /
    • 1997
  • This paper presents a path planning algorithm for biped walking robot in 3-D workspace. Since the biped walking robot can generate path on some 3-D obstacles that cannot generate path in case of mobile robot, we have to make a new path planning algorithms. A 3-D-to-2-D mapping algorithm is proposed and two kinds of path planning algorithms are also proposed. They make it easier to generate an efficient path for biped walking robot under given environment. Some simulation results are shown to prove the effectiveness of proposed algorithms.

  • PDF

Gait Implementation using a Kick Action for IWR-III Biped Walking Robot (이족보행로봇의 킥엑션을 이용한 보행 구현)

  • Jin, Kwang-Ho;Park, Chun-Ug;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.552-554
    • /
    • 1998
  • This paper deals with the gait generation of IWR-III using a kick action to have a walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. Balancing motion is analyzed by FDM during the walking, By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis, ZMP analysis and system stability is confirmed. Walking motion is visualized by 3D- graphic simulator. As a result, trunk ahead motion effect and impactless smooth walking is implemented by experiment. Finally walking with kick action is implemented the IWR-III system.

  • PDF

Energy Optimization for The Walking of Biped Robot (이족보행로봇의 보행을 위한 에너지 최적화)

  • Kim, Jong-Tae;Choi, Sang-Ho;Lim, Sun-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2339-2341
    • /
    • 1998
  • This paper is concerned with an energy optimization for the walking of IWR biped robot. The movement of balancing joints are determined by ZMP(Zero Moment Point) and dynamic properties caused by motion of a swing leg. Therefore, ZMP positions have an important role in walking and guarnateeing the stability of a robot. A genetic algorithm is utilized for solving this problem and finding ZMP with a minimum energy at each sampling time during the walk. In this study, we performed an energy optimization with desired ZMP trajectories and motion of balancing joints.

  • PDF

A Study on the Trajectory Planning of Biped Walking Robot IWR (이족보행로봇 IWR의 궤적생성에 관한 연구)

  • Choi, Young-Ha;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2345-2347
    • /
    • 1998
  • This paper deals with the trajectory planning of IWR biped robot using genetic algorithm. The trajectory of a swing leg is generated by 5th order polynomial equation. Velocities and Acceleration properties on a viapoints are needed. These constants are given by heuristic method. The optimal values are determined by G.A to minimize the jerk of a trajectory. As a result, trajectory planning is implemented not on between two viapoints but on a whole interval. Efficient numerical calculation routines and walking algorithms for simulation are accomplished by MATLAB package.

  • PDF