• 제목/요약/키워드: 이젝터 노즐

검색결과 59건 처리시간 0.025초

5kW 용융탄산염 연료전지 이젝터 설계 및 시험 (The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell)

  • 김범주;김도형;이정현;정상천;이성윤;강승원;임희천
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2008
  • An ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The Ejector is applied for a variety of industrial fields such as refrigerators and power plants. It is adopted to recycle anode off gas safely in 5kW Molten Carbonate Fuel Cell system of KEPRI(Korea Electric Power Research Institute). The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat. In addition, the performance curve of the ejector and the differential pressure in diffuser is observed.

  • PDF

Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구(제2보 : 이젝터의 원리를 이용한 액체노즐의 액체공급 및 액막생성 기구와 특성) (A Study on the High-Efficiency Atomisation Molten Materials (PART 2 : A Study on the Mechanism of Liquid Supplying and Film Formation by Applying the Ejector Principle))

  • 오재건;조일영
    • 한국분무공학회지
    • /
    • 제3권2호
    • /
    • pp.14-23
    • /
    • 1998
  • The negative pressure as much as 10's mmHg is demanded at nozzle inside, in case of atomizing the large density molten materials. by conventional air jet nozzle. In this study, suction type fluid nozzle is designed by applying the ejector principle in order to clarify the air flow of nozzle inside, mechanism of liquid suction and liquid film formation. The results of this experimental study areas follows. Suction force of liquid is magnified by using liquid nozzle, and it is able to supply the liquid stable. Negative pressure at nozzle inside is varied by throttle angle of liquid nozzle, position and outer diameter of air jet nozzle, and have a influence on liquid suction quantity and liquid film formation.

  • PDF

선박용 Ejector의 직관부와 디퓨저 길이 변화에 따른 성능비교 및 유동특성에 관한 연구 (The evaluation of performance and flow characteristics due to the length of throat and diffuser for ship's ejector)

  • 이영호;김문오;김창구;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.31-38
    • /
    • 2014
  • 이젝터는 고압의 주유동을 통해 저압의 부유동을 이동시키는 단순한 장치이다. 이젝터의 효율은 주방향으로 작동하는 다른 이송 장치에 비해 매우 낮다. 그러나 구동장치가 없어 간단한 구조를 가지고 있으며, 낮은 구동에너지로 많은 양의 유체를 이송시킬 수 있는 장점을 가지고 있다. 본 연구에서는 선박에서 많이 사용되고 있는 side-type 액체용 이젝터에 작동유체의 유량을 변화시키면서 정상, 비압축성 유동에 대해 실험 및 CFD 분석을 통하여 직관부 및 디퓨저의 길이변화에 따른 이젝터의 유동 패턴과 흡입 현상을 분석하였다.

수치해석을 이용한 담수장치용 이젝터의 노즐위치 변화에 따른 이젝터 유동특성 연구 (CFD Analysis on the Flow Characteristics of Ejector According to the Position Changes of Driving Nozzle for F.W.G)

  • 주홍진;정일영;윤상국;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.23-28
    • /
    • 2011
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube (throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. The multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Condition of the simulation was varied in entrance mass flow rate (1kg/s, 1.5kg/s, 2kg/s, 2.5kg/s, 3kg/s), and position of driving nozzle was located from the central axis of the suction at -10mm, 0mm, 10mm, 20mm, 30mm.. Asaresult, suction flow velocity has the highest value in central axis of the suction.

Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구 (A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept)

  • 정성재;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

Petal 노즐로부터 방출되는 초음속 자유제트 유동에 관한 연구 (A Study of the Supersonic Free Jet Discharging from a Petal Nozzle)

  • 이준희;김중배;김희동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.109-112
    • /
    • 2002
  • The supersonic jet discharging from a petal nozzle is known to enhance mixing effect with the surrounding gas because it produces strong longitudinal vortices due to the velocity difference from both the major and minor axes of petal nozzle. In the present study, the supersonic free jet discharging from the petal nozzle is investigated experimentally. The nozzles used are 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7, and the flow fields are compared with a circular nozzle with the same design Mach number. The pitot impact pressures are measured using a fine pilot probe. The flow fields are visualized using a Schlieren optical method. The results show that the petal nozzle has more increased supersonic length compared with the circular jet.

  • PDF

산소 전달 특성에 미치는 이젝터 구동 노즐 면적비에 따른 혼합 분류의 영향 (Effect of Mixed Jet with Primary Nozzle Area Ratio of Ejector on Oxygen Transfer Characteristics)

  • 박상규;양희천
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.126-133
    • /
    • 2022
  • The objective of this is to experimentally investigate the effect of mixed jet on the oxygen transfer characteristics with the primary nozzle area ratio of an annular nozzle ejector for the application of a microbial fuel cell. A direct visualization method with a high speed camera system was used to capture the horizontal mixed jet images, and a binarization technique was used to analyze the images. The clean water unsteady state technique was used for the oxygen transfer measurement. The air-water mixed jet discharging into a water tank behaved similar to a buoyancy or horizontal jet with the primary nozzle area ratio. It was found that an optimum primary nozzle area ratio was observed where the oxygen transfer performance reached its maximum value due to the decrease of air volume fraction and the increase of jet length and air bubble dispersion.

운전조건 및 노즐위치에 따른 이젝터 성능특성에 관한 실험적 연구 (Experimental Analysis on the Performance Characteristics of an Ejector according to Inlet Pressure and Nozzle Position)

  • 이재준;전용석;김선재;김용찬
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.263-268
    • /
    • 2015
  • In this study, the performance of an ejector in the refrigeration cycle was experimentally studied using R600a. The performance of the ejector is analyzed according to the inlet pressure and nozzle position. The increase in the primary nozzle pressure decreased the pressure difference across the ejector. In the low entrainment region, the increased suction flow pressure led to an increase in the pressure difference. In the high entrainment region, the pressure difference was inversely proportional to the suction pressure. The effects of nozzle position ($L_n$) were also analyzed and for $L_n<0$, the decreased suction chamber volume led to a large pressure drop with the small increase in the suction mass flow rate. For $L_n>0$, the increased $L_n$ disturbed the primary nozzle flow and thus an increase in the primary nozzle flow increased the pressure lifting effect. In contrast, the increased suction mass flow rate decreased the pressure difference. When the nozzle outlet was located at the mixing part entrance ($L_n=0$), the ejector showed the highest pressure lifting effect.

고공환경 모사용 이차목 디퓨저의 배압에 따른 성능 특성 (A Study on Performance Characteristics of Second Throat Exhaust Diffuser with Back Pressure)

  • 김완찬;유이상;김태완;박진수;고영성;김민상
    • 대한기계학회논문집B
    • /
    • 제41권9호
    • /
    • pp.563-570
    • /
    • 2017
  • 본 연구에서는 이차목 디퓨저의 배압에 따른 특성과 디퓨저 내부의 유동을 확인하기 위해서 실험과 수치해석을 통하여 살펴보았다. 디퓨저의 배압($P_a$)조건을 모사하기 위해 이젝터를 사용하였으며, 디퓨저와 이젝터는 상온 고압기체질소를 사용하였다. 그 결과, 노즐전단압력($P_0$)이 동일할 때 배압($P_a$)을 낮추어 압력비($P_0/P_a$)를 높게 할수록 압력회복이 디퓨저 후단에서 이루어짐을 확인하였다. 노즐전단압력($P_0$)이 다르더라도 압력비($P_0/P_a)$가 동일하다면 디퓨저 내부의 유동특성이 거의 동일함을 확인하였으며, 시동압력비($(P_0/P_a)_{st}$) 또한 일치함을 확인하였다.

펠릿 이송용 이젝터의 구동노즐 구성에 따른 유동 및 이송특성에 관한 실험적 연구 (Effect of Primary Nozzle Configuration on the Flow and Transfer Characteristics in an Ejector System for Pellet Transfer)

  • 김금규;김의수;강신명;이지근;노병준
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.49-59
    • /
    • 2008
  • The effects of design parameters on the pellet transport rate in the ejector system which is widely used in the production processes of automotive parts were investigated experimentally. The primary nozzle geometry, the area ratio (R) of nozzle exit cross-sectional area to mixing chamber cross-sectional area and the distance (S) from primary nozzle exit to mixing chamber entrance were considered as the design parameters. The area ratios of the primary nozzle were varied from R=0.10 to R=0.25, 0.30, 0.40 and 0.55. The primary nozzle was positioned at the non-dimensional distance (S/D) of 1.30, 1.87, 2.44, 3.00 and 3.75, normalized using the mixing chamber diameter (D). The design parameters were determined to run with high efficiency by measuring the pellets transport rate. The geometry and the area ratio (R) of the primary nozzle had an effect on the pellet transport rate of the ejector system, and the area ratio of R=0.3 was carefully selected after taking the minimum fluidization velocity and transport rate of applied pellets into account. The higher pellet transport rate with the variation of the distance (S/D) was observed at S/D of 2.44.