• Title/Summary/Keyword: 이웃해 생성 방법

Search Result 121, Processing Time 0.027 seconds

협력적 필터링 추천시스템에서 이웃의 수를 이용한 선호도 예측보정 방법

  • Lee, Seok-Jun;Kim, Sun-Ok;Lee, Hee-Choon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.27-31
    • /
    • 2009
  • 본 연구는 웹상에서 거래되는 아이템을 고객에게 추천하는 추천시스템에서 추천대상 고객의 정보와 이웃 고객의 정보를 이용한 협력적 필터링 추천기법에서 선호도 예측을 위해 필요한 이웃의 수가 선호도 예측 정확도에 영향을 주고 있음을 제시하고 이를 이용한 선호도 예측치의 보정 방법에 대하여 제안한다. 본 연구의 제안을 위하여 이웃 기반의 협력적 필터링 알고리즘과 대응평균 알고리즘을 이용하여 MovieLens 1 million dataset에 대하여 선호도 예측 정확도를 분석하고 분석결과를 토대로 개별 선호도 예측에 소요된 이웃의 수와 예측 정확도의 관계를 분석하였다. 분석결과를 이용하여 이웃 수에 따라 선호도 예측 결과를 다수의 집단으로 구분하여 각 집단에서 이웃의 수를 이용한 선호도 예측 정확도 향상에 대한 방법을 제안한다. 본 연구의 제안을 통하여 기존 선호도 예측 알고리즘으로 생성된 예측 결과에 선호도 예측 과정에서 부가적으로 발생한 정보를 추가하여 최종 예측 결과를 향상시킬 수 있을 것으로 기대한다.

  • PDF

Combined Quorum-based NDP in Heterogeneous Wireless Sensor Networks (무선센서 네트워크에서 결합 큐롬 기반 이웃노드 탐색프로토콜 스케줄링 생성 방법)

  • Lee, Woosik;Youn, Jong-Hoon;Song, Teuk-Seob
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.753-760
    • /
    • 2017
  • In this paper, we propose a new method to improve the performance of a Quorum-based NDP (Neighbor Discovery Protocol) in heterogeneous wireless sensor networks. It creates a new set of discovery schedules by combining two different Quorum-based matrices. The original Quorum-based schedule guarantees only two overlapping active slots with a cycle, but the newly created matrix greatly increases the chance of neighbor discovery. Therefore, although the size of the combined matrix of the proposed method increases, the number of discovery chances with neighboring nodes considerably increases, and the new approach is superior to the original Quorum-based neighbor node discovery protocol. In this study, we compares the performance of the proposed method to the Quorum-based protocols such as SearchLight and Hedis using TOSSIM. We assume all sensor nodes operates in a different duty cycle in the experiment. The experimental results show that the proposed algorithm is superior to other Quorum-based methods.

A Empirical Study on Recommendation Schemes Based on User-based and Item-based Collaborative Filtering (사용자 기반과 아이템 기반 협업여과 추천기법에 관한 실증적 연구)

  • Ye-Na Kim;In-Bok Choi;Taekeun Park;Jae-Dong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.714-717
    • /
    • 2008
  • 협업여과 추천기법에는 사용자 기반 협업여과와 아이템 기반 협업여과가 있으며, 절차는 유사도 측정, 이웃 선정, 예측값 생성 단계로 이루어진다. 유사도 측정 단계에는 유클리드 거리(Euclidean Distance), 코사인 유사도(Cosine Similarity), 피어슨 상관계수(Pearson Correlation Coefficient) 방법 등이 있고, 이웃 선정 단계에는 상관 한계치(Correlation-Threshold), 근접 N 이웃(Best-N-Neighbors) 방법 등이 있다. 마지막으로 예측값 생성 단계에는 단순평균(Simple Average), 가중합(Weighted Sum), 조정 가중합(Adjusted Weighted Sum) 등이 있다. 이처럼 협업여과 추천기법에는 다양한 기법들이 사용되고 있다. 따라서 본 논문에서는 사용자 기반 협업여과와 아이템 기반 협업여과 추천기법에 사용되는 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 알아보기 위해 성능 실험 및 비교 분석을 하였다. 실험은 GroupLens의 MovieLens 데이터 셋을 활용하였고 MAE(Mean Absolute Error)값을 이용하여 추천기법을 비교 하였다. 실험을 통해 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 찾을 수 있었고, 사용자 기반 협업여과와 아이템 기반 협업여과의 성능비교를 통해 아이템 기반 협업여과의 성능이 보다 우수했음을 확인 하였다.

A Study on the Generation of Crew Scheduling Diagram Using Neighborhood Search Method for Improving Railway Operation Management (철도 운영관리 효율화를 위한 이웃해 탐색기법을 사용한 승무다이아 생성방안)

  • Lee, Jaehee;Park, Sangmi;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.5
    • /
    • pp.42-51
    • /
    • 2019
  • The train operation institution establishes a transportation plan based on the forecast of transport demand and the ability of train vehicles to transport, and establishes a train operation plan accordingly. The train operation plan adjusts the intervals between trains, creates a timetable (train diagram) for trains, and establishes a plan for the operation of train vehicles used for train operation. The train operation institution shall establish a crew schedule to determine and place the crew members of the trains arranged in the diagram in order to enhance the efficiency of the operation management of the trains. In this study, the authors apply the neighborhood search method that satisfies the constraints at the phase of generating the crew diagram. This suggests a methodology for efficient management of crew schedule plan. The crew diagram generated in this study compared with the existing crew diagram in accordance with the actual operating train timetable, and verified the effectiveness of the suggested method.

Neighborhood Search Algorithms for the Maximal Covering Problem (이웃해 탐색 기법을 이용한 Maximal Covering 문제의 해결)

  • Hwang, Jun-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.129-138
    • /
    • 2006
  • Various techniques have been applied to solve the maximal covering problem. Tabu search is also one of them. But, existing researches were lacking of the synthetic analysis and the effort for performance improvement about neighborhood search techniques such as hill-climbing search and simulated annealing including tabu search. In this paper, I introduce the way to improve performance of neighborhood search techniques through various experiments and analyses. Basically, all neighborhood search algorithms use the k-exchange neighborhood generation method. And I analyzed how the performance of each algorithm changes according to various parameter settings. Experimental results have shown that simple hill-climbing search and simulated annealing can produce better results than any other techniques. And I confirmed that simple hill-climbing search can produce similar results as simulated annealing unlike general case.

  • PDF

Graph-based Motion Segmentation using Normalized Cuts (Normalized Cuts을 이용한 그래프 기반의 모션 분할)

  • Yun, Sung-Ju;Park, An-Jin;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.522-526
    • /
    • 2008
  • 모션 캡쳐 장비는 사람의 자연스러운 행동이나 동작 정보를 정밀하게 얻기 위해 널리 사용되며, 영화나 게임과 같은 콘텐츠에서 자주 활용되고 있다. 하지만 모션 캡쳐 장비가 고가이기 때문에 한번 입력받은 데이터를 모션별로 분할하고 상황에 맞게 재결합하여 사용할 필요가 있으며, 입력 데이터를 모션별로 분할하는 것은 대부분 수동으로 이루어진다. 이 때문에 캡쳐된 데이터를 자동으로 분할하기 위한 연구들이 다양하게 시도되고 있다. 기존의 연구들은 크게 전역적 특성에 대한 고려없이 이웃하는 프레임만을 고려하는 온라인 방식과 데이터를 전역적으로 고려하나 이웃하는 프레임 사이의 관계를 고려하지 않는 오프라인 방식으로 나누어진다. 본 논문에서는 온라인과 오프라인 방식을 병합한 그래프 기반의 모션 분할 방법을 제안한다. 분할을 위해 먼저 모션데이터를 기반으로 그래프를 생성하며, 그래프는 이웃하는 각 프레임사이의 유사도뿐만 아니라 시간축을 기반으로 일정시간내의 프레임들의 유사도를 모두 고려하였다. 이렇게 생성된 그래프를 분할하기 위해 분할된 모션내의 유사도 합을 최소화하고 각 모션간의 유사도는 최대화할 수 있는 normalized cuts을 이용하였다. 실험에서 제안된 방법은 기존의 오프라인 방식 중 하나인 GMM과 온라인 방식 중 하나인 국부최소값 분할 방법보다 좋은 결과를 보였으며, 이는 각 프레임 사이의 유사도뿐만 아니라 일정시간내의 유사도를 전역적으로 고려하기 때문이다.

  • PDF

An Integration of Local Search and Constraint Programming for Solving Constraint Satisfaction Optimization Problems (제약 만족 최적화 문제의 해결을 위한 지역 탐색과 제약 프로그래밍의 결합)

  • Hwang, Jun-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.39-47
    • /
    • 2010
  • Constraint satisfaction optimization problem is a kind of optimization problem involving cost minimization as well as complex constraints. Local search and constraint programming respectively have been used for solving such problems. In this paper, I propose a method to integrate local search and constraint programming to improve search performance. Basically, local search is used to solve the given problem. However, it is very difficult to find a feasible neighbor satisfying all the constraints when we use only local search. Therefore, I introduced constraint programming as a tool for neighbor generation. Through the experimental results using weighted N-Queens problems, I confirmed that the proposed method can significantly improve search performance.

A Study on the Performance Improvement in SEcure Neighbor Discovery (SEND) Protocol (보안 이웃 탐색 프로토콜 성능 향상 기법에 관한 연구)

  • Park, Jin-Ho;Im, Eul-Gyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.85-96
    • /
    • 2008
  • Neighbor Discovery(ND) protocol is used to exchange an information of the neighboring nodes on the same link in the IPv6 protocol environment. For protecting the ND protocol, firstly utilizing Authentication Header(AH) of the IPsec protocol was proposed. But the method has some problems-uses of key exchange protocol is not available and it is hard to distribute manual keys. And then secondly the SEcure Neighbor Discovery(SEND) protocol which protects all of the ND message with digital signature was proposed. However, the digital signature technology on the basis of public key cryptography system is commonly known as requiring high cost, therefore it is expected that there is performance degradation in terms of the availability. In the paper, to improve performance of the SEND protocol, we proposed a modified CGA(Cryptographically Generated Address) which is made by additionally adding MAC(Media Access Control) address to the input of the hash function. Also, we proposed cache mechanism. We compared performance of the methods by experimentation.

A Generic Algorithm for k-Nearest Neighbor Graph Construction Based on Balanced Canopy Clustering (Balanced Canopy Clustering에 기반한 일반적 k-인접 이웃 그래프 생성 알고리즘)

  • Park, Youngki;Hwang, Heasoo;Lee, Sang-Goo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Constructing a k-nearest neighbor (k-NN) graph is a primitive operation in the field of recommender systems, information retrieval, data mining and machine learning. Although there have been many algorithms proposed for constructing a k-NN graph, either the existing approaches cannot be used for various types of similarity measures, or the performance of the approaches is decreased as the number of nodes or dimensions increases. In this paper, we present a novel algorithm for k-NN graph construction based on "balanced" canopy clustering. The experimental results show that irrespective of the number of nodes or dimensions, our algorithm is at least five times faster than the brute-force approach while retaining an accuracy of approximately 92%.

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.