• Title/Summary/Keyword: 이온 침투

Search Result 406, Processing Time 0.036 seconds

Mode of Action of Several Surfactants on Paraquat Efficacy (Paraquat 활성에 미치는 계면활성제의 작용기구)

  • Choi, Jung-Sup;Hwang, In-Taek;Kim, Jin-Seok;Kim, Tae-Joon;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.3
    • /
    • pp.193-201
    • /
    • 2002
  • The effects of 24 ionic and nonionic surfactants on paraquat (1, 1' -dimethyl-4 4'-bipyridinium) efficacy were investigated with several annual plant species under greenhouse conditions. The paraquat efficacy was decreased or even lost when treated with the anionic surfactants tested. However, the efficacy of paraquat was significantly increased by 7 nonionic surfactants such as sorbitan palmitate, sorbitan stearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene stearyl ether, polyoxyethylene laurylamine ether, and polyoxyethylene stearylamine ether. Among these tested surfactants, 0.08% of polyoxyethylene laurylamine ether most significantly increased the paraquat activity, and the $GR_{50}$ value of paraquat with polyoxyethylene laurylamine ether was 1.6 times lower than the $GR_{50}$ value without polyoxyethylene laurylamine ether. In in vitro experiments, cellular leakage and chlorophyll contents between the application with and without polyoxyethylene laurylamine ether did not show significant changes. The absorption rate of $^{14}C$ paraquat in the treatment with polyoxyethylene laurylamine ether showed an absorption rate of 1.6 times higher than without surfactant. These results suggest that using compatible surfactants would increase the paraquat efficacy, and this increasing are due to improved absorption rate with the surfactant.

An Evaluation of the Structural Integrity of the Polymer-Modified Cement Waste Form (폴리머 시멘트 고화체에 대한 구조적 건전성 평가)

  • Ji, Young-Yong;Kwak, Kyung-Kil;Hong, Dae-Seok;Kim, Tae-Kuk;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Polymer-modified cement is the composite material made by partially replacing and strengthening the cement hydrate binders of conventional mortar with polymeric modifiers such as polymer latexes and redispersible polymeric modifiers. It is known that the addition of polymer to cement mortar leads to improved quality, which would be expected to have a high chemical resistance. Therefore, the purpose of this study is to identify the improved chemical resistance, such as low permeability and low ion diffusivity, of the polymer-modified cement as a solidification agent for the radwaste. First, polymer-modified cement specimens by latex modification were prepared according to the polymer content from 0% to 30% to select the optimized polymer content. At those specimens, the water-to-cement (W/C) ratio was maintained to 33% and 50% respectively. After the much curing time, the structural integrity of specimens was evaluated through the compressive strength test and the porosity evaluation by the water immersion method. From the results, 10% of the polymer content at 33% of the W/C ratio was shown to have the most improved quality. Finally, the leaching test referredfrom ANS 16.1 for the specimens having the most improved quality was conducted. Dedicated specimens for the leaching test were then mixed with radioisotopes of $^{60}Co$ and $^{137}Cs$ at the specimen preparation.

Material Characteristics of Rapid Hardening Cement Paste Using Phase Change Material for Semi-rigid Pavement (상변화물질을 사용한 반강성 포장용 초속경시멘트 페이스트 재료의 성능평가)

  • Kim, Seung-Su;Lee, Byung-Jae;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2016
  • A study to apply phase change material(PCM) to rapid hardening cement paste forming semi-rigid pavement was carried out. The characteristics fresh and hardened paste were evaluated through the experiment for a total of 6 mixtures according to the cement type and the substitution of phase change material for acrylate. The fluidity by substituting phase change material for acrylate satisfied the target flow time of 10 to 13 seconds. In case of setting time, it was possible to secure the performance of rapid hardening cement by substituting phase change material, and if the substitution ratio over 60%, the initial set occurred 1 to 2 minutes faster than other mixtures. In case of compressive strength and bond strength, it showed similar strength characteristics with the plain mixture, and it satisfied both the target compressive and bonding strength of 36MPa and 2MPa. The mixture substituting phase change material showed higher resistance to chloride ion penetration than the mixture only using acrylate and the OPC level was insufficient. From the results of physical and mechanical performances of semi-rigid pavement cement paste, the phase change material substitution rate of 20% was effective in the range of this study.

A Development of concrete Pavement Material with Low Shrinkage and Reflection, High Strength and Performance (저수축 저반사 고강도 고내구성 콘크리트 포장재료 개발)

  • Kim, Hyo-Sung;Nam, Jeong-Hee;Eum, Ju-Yong;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.13-24
    • /
    • 2009
  • This study developed a high strength and performance concrete pavement material with low shrinkage and reflection of sunlight. Based on the literature review, a new mix-design of applying flash ash to improve the strength and performance of the concrete as well as to reduce the dry shrinkage is suggested. In addition, adding black pigment to reduce the reflection and technique of applying OAG (Optimized Aggregate Gradation) is also included. The result of the laboratory experiment indicates that the brightness and the reflection, which depends on the ratio of black pigment addition, did not deviate from the normal range. When OAG is considered for the mix-design, the strength and performance of the concrete improved greatly. In addition, the mix-design using fly ash reduced the dry shrinkage of concrete and improved the resistance to the permeation of chloride ion. Furthermore, the mix-design, which uses fly ash (25% replacement) and black pigment (3% addition) with the application of OAG, is found to be the most effective mix to reduce the shrinkage and reflection as well as improving the strength and performance of the concrete. The result of an economic analysis indicates that the initial construction cost of this proposed mix is more expensive than that of normal concrete pavement material. However, it can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

  • PDF

Effect of Calcium Chloride and Sodium Chloride on the Leaching Behavior of Heavy Metals in Roadside Sediments (염화칼슘과 소금이 도로변 퇴적물의 중금속 용출에 미치는 영향)

  • Lee Pyeong koo;Yu Youn hee;Yun Sung taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • Deicer operations provide traffic safety during winter driving conditions in urban areas. Using large quantities of de-icing chemicals (i.e., $CaCl_2$ and NaCl) can cause serious environmental problems and may change behaviors of heavy metals in roadside sediments, resulting in an increase in mobilization of heavy metals due to complexation of heavy metals with chloride ions. To examine effect of de-icing salt concentration on the leaching behaviors and mobility of heavy metals (cadmium, zinc, copper, lead, arsenic, nickel, chromium, cobalt, manganese, and iron), leaching experiments were conducted on roadside sediments collected from Seoul city using de-icing salt solutions having various concentrations (0.01-5.0M). Results indicate that zinc, copper, and manganese in roadside sediments were easily mobilized, whereas chromium and cobalt remain strongly fixed. The zinc, copper and manganese concentrations measured in the leaching experiments were relatively high. De-icing salts can cause a decrease in partitioning between adsorbed (or precipitated) and dissolved metals, resulting in an increase in concentrations of dissolved metals in salt laden snowmelt. As a result, run-off water quality can be degraded. The de-icing salt applied on the road surface also lead to infiltration and contamination of heavy metal to groundwater.

Effects of Simulated Acid Rain on Soil Chemical Properties (인공산성비 처리가 토양의 화학적 성질에 미치는 영향)

  • Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.400-406
    • /
    • 1998
  • To investigate the effect of simulated acid rain on the change in soil chemical properties, simulated acid rain of different pH was applied to the three soils of different texture. Simulated acid rain of pH 4.0 and 6.0 did not greatly change the soil pH, while simulated acid rain of pH 2.0 decreased greatly the soil pH. Decrease in soil pH were in the order of sandy loam > loam > clay loam, while increase in exchangeable acidity was in the order of clay loam > loam > sandy loam. Amount of nutrients leached downward due to the penetration of simulated acid rain into the soil was in the order of Ca > K > Mg. Exchangeable Al was not detected when soil acidity dropped to pH 5 and exchangeable acidity increased within a range of CEC. A total 1200mm of simulated acid rain(pH 3.0) can load $12kg\;ha^{-1}$ of $H^+$ ion, $128kg\;ha^{-1}$ of sulfur, $56kg\;ha^{-1}$ of nitrogen. The acidity of simulated acid rain pH 3.0 can be neutralized by addition of $444kg\;ha^{-1}$ of slaked lime. The amount of leached bases were equivalent to 923, 1731 and $1608kg{\cdot}ha^{-1}$ in sandy loam, loam and clay loam soil respectively.

  • PDF

Analysis of groundwater level change using groundwater monitoring network in Miryang area. (지하수관측망을 이용한 밀양지역의 지하수 변화 분석)

  • Baek, Mi Kyung;Sim, Gyu Sung;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.221-221
    • /
    • 2019
  • 기후변화로 인한 가뭄대비가 상시체제가 된 요즈음, 농업용수의 안정적인 공급을 위하여 가뭄 등의 비상시 지표수는 물론이고 지하수의 공급 가능량에 대해서도 국가적 관리가 필요한 실정이다. 지하수관리를 위해 국가 최상위 계획인'지하수관리기본계획(2012~2021)'이 수립되었고, 지하수의 장기적인 수량, 수질 관리를 위해 국가지하수관측망, 지역지하수관측망(보조지하수관측망), 수질측정망, 해수침투관측망 등 광역과 지역단위로 크게 나누어 지하수관측이 이루어지고 있다. 국가지하수관측망은 지하수법에 의거하여 전국의 주요지점(2016년 말 기준 412개소)에 관측소를 설치하여 수위 및 수질의 변동실태를 광역적으로 분석함이 목적이며, 보조지하수관측망은 국가지하수관측망과 연계하고 보완하기 위한 기능으로서, 지역별 주요 관측지점의 수위, 수질자료를 획득하며, 2018년 9월 현재 3,429개소가 설치되어있다. 본 연구에서는 지역지하수 관측망 중 경남밀양지역에 설치된 관측정 31개소에 대해 수위와 수질을 장기 분석하였다. 밀양지역의 보조지하수관측망 설치는 지하수관리계획의 하부계획인'경상남도 지하수관리계획(2015~2025)'에 의거 2012년에 6개소의 관측공이 설치를 시작으로, 2013년 7개소, 2014년 10개소, 2015년 8개소를 설치하여 총 31개소의 설치를 완료하였고, 2016년부터 2019년 현재까지 전체 관측정 31개소에 대하여 관측 운영 중이다. 본 연구에서는 2013년 1월~2019년 1월까지 지역의 누적강수량과 지하수위 및 수질변화를 관측하였다. 전 관측정에 대해 수위(GL.m), 수질(온도, EC)은 1시간 주기로 관측하였으며, 연 2회 생활용수 기준(19항목)의 수질검사를 실시하고, 지하수성분의 지질학적 기원분석을 위한 양음이온 분석을 연 1회 실시하였다. 관측정의 양수능력 변화관측을 위해 대수성 시험을 연 1회 실시하였고, 관측정의 특성상 장기간 미사용 관정이므로 최적의 상태유지를 위해 연1회 공내세척을 실시하였다. 또한, 관측정의 지형별 차이를 분석하기 위해 관측정의 설치위치를 산악, 강변, 기타 지역으로 구분하고, 각각의 대표관정에 대해 지형에 의한 서로 다른 영향을 분석하였고, 관측정의 심도별 변화를 알기위해 동일지역에 충적, 안반 관측정을 따로 설치하고 관측하여 지표수와 지하수의 심도별 영향의 차이를 분석하였다. 동일지역의 관측결과 평균 5m이하의 수위변화를 보이나, 5m 이상의 수위변동을 보이는 관측망은 15년 14개소 17년 19개소로 증가추세를 보이며, 이는 주로 밀집된 시설하우스 단지의 수막재배를 위한 겨울철 지하수 사용량 증가가 원인인 것으로 판단된다. 밀양지역은 강변지역에 밀집된 시설하우스단지의 동절기 수막재배를 위한 지하수 과다사용으로 수위급감 및 수량부족현상이 반복되고 있어, 예방과 대책강구를 위해 지표수의 함양과 지하수사용량의 상관관계 분석과 자료축적 및 추가연구를 위한 장기관측이 요구된다.

  • PDF

Characteristics of OCP of Reinforced Concrete Using Socket-type Electrodes during Periodic Salt Damage Test (주기적 염해 시험에 따른 소켓 타입 전극을 활용한 철근 콘크리트의 OCP 특성)

  • Lee, Sang-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.28-36
    • /
    • 2021
  • It is known that buried rebars inside concrete structures are protected from corrosion due to passive layer. It is very important to delay the timing of corrosion or evaluate a detection of corrosion initiation for the purpose of cost-beneficiary service life of a structure. In this study, corrosion monitoring was performed on concrete specimens considering 3 levels of cover depth(60 mm, 45 mm, and 30 mm), W/C(water to cement) ratio(40.0%, 50.0%, and 60.0%) and chloride concentration(0.0%, 3.5%, and 7.0%). OCP(Open Circuit Potential) was measured using agar-based socket type sensors. The OCP measurement showed the consistent behavior where the potential was reduced in wet conditions and it was partially recovered in dry conditions. In the case of 30 mm of cover depth for most W/C ratio cases, the lowest OCP value was measured and rapid OCP recovery was evaluated in increasing cover depth from 30 mm to 45 mm, since cover depth was an effective protection against chloride ion ingress. As the chloride concentration increased, the effect on the cover depth tended to be more dominant than the that of W/C ratio. After additional monitoring and physical evaluation of chloride concentration after specimen dismantling, the proposed system can be improved with increasing reliability of the corrosion monitoring.

Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries (계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용)

  • Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.559-564
    • /
    • 2019
  • Hierarchical $ZnCo_2O_4$ hollow nanofibers were prepared by electrospinning and subsequent heat-treatment process. The spinning solution containing polystyrene (PS) nanobeads was electrospun to nanofibers. During heat-treatment process, PS nanobeads in the composite were decomposed and therefore generated numerous pores uniformly in the structure, which facilitated the heat transfer and gas penetration into the structure. The resulting hierarchical $ZnCo_2O_4$ hollow nanofibers were applied as an anode material for lithium-ion batteries. The discharge capacity of the nanofibers was $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$) after the 300th cycle at a high current density of $1.0A\;g^{-1}$. However, $ZnCo_2O_4$ nanopowders showed the discharge capacity of $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$) after 300th cycle. The excellent lithium ion storage property of the hierarchical $ZnCo_2O_4$ hollow nanofibers was attributed to the synergetic effects of the hollow nanofiber structure and the $ZnCo_2O_4$ nanocrystals composing the shell. The hierarchical hollow nanofiber structure introduced in this study can be extended to various metal oxides for various applications, including energy storage.

Quantification of Chloride Diffusivity in Steady State Condition in Concrete with Fly Ash Considering Curing and Crack Effect (재령 및 균열효과를 고려한 플라이애시 콘크리트의 정상상태 염화물 확산 특성의 정량화)

  • Yoon, Yong-Sik;Cheon, Ju-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • In case of the cracks in concrete, the penetration of deterioration ions such as chloride ions in to cracks is accelerated. According to the penetration of chloride ions, structural and durability problems to RC(Reinforced Concrete) structures are caused. In this study, the accelerated chloride diffusion coefficient which is in steady state is evaluated for 2 year aged normal and high strength FA(Fly Ash) concrete, after a range of crack depths are induced up to 1.0 mm in 56 aged day. Considering crack effect by linear regression analysis, high strength concrete has slightly less increasing ratio of diffusion coefficient by crack than normal strength concrete, and diffusion coefficient increases non-linearly as crack width is increased. Also, In two types of concrete, crack effect decrease as the curing period increase. In the case of quantifying crack and curing effect by using exponential function form, the coefficients of determination are higher than those of linear regression analysis. Under steady state, it is thought that there is not a high correlation between the crack effect and the curing effect, and considering the two independent effects, it is believed that reasonable prediction equation for diffusion of concrete with crack can be proposed.