• Title/Summary/Keyword: 이온확산

Search Result 651, Processing Time 0.025 seconds

레이저 코팅

  • Korea Optical Industry Association
    • The Optical Journal
    • /
    • s.102
    • /
    • pp.22-27
    • /
    • 2006
  • 코팅에는 매우 많은 종류가 있다. 또한 박막(Thin Film)의 경우, 기상법, 액상법, 졸겔법 또는 도금법 등의 퇴적 방식으로 제작되는 것과 산화, 확산 또는 이온 주입 등의 기판 침입법으로 형성되는 것 등 매우 다양하다. 레이저용 코팅은 그 중 극히 일부에 지나지 않으며, 시장적으로도 틈새 분야이다. 그러나 레이저가 세상에 출현한 이래 40년의 시간이 지나는 동안 레이저 가공, 레이저 의료, 리소그래피 인쇄, 광 통신, 레이저 계측 등 광범위하게 레이저가 사용되었으며, 레이저용 코팅에 대한 수요가 증가되고 있는 것이 현실이다. 레이저용 코팅은 카메라나 안경으로 대표되는 광학 박막과 동일한 성격이지만, 레이저라는 일반적으로 에너지가 강한 광선에 사용되기 때문에, 레이저 손상을 고려하여 제작해야 한다.

  • PDF

Life Expectation of Salt Attack for Fire Damaged RC Structure (화재피해를 입은 콘크리트 건축물의 염해 내구수명 산정)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.15-16
    • /
    • 2017
  • The properties of concrete damaged by fire change according to the temperature. Diffusion coefficient of chloride ion also can change which affect the life expectation under salt circumstance. Diffusion coefficient was measured by NT BUILD 492 using the concrete specimen damaged by high temperature. FEM analysis was performed to predict the life expectancy which can help to diagnose the concrete diagnose and to design maintenance strategy.

  • PDF

Effect of Blending Materials on the Durability of Concrete (I) Diffusion of Cl-ions through Hardened Cement Paste (염분환경하 콘크리트 경화체의 내구성에 미치는 혼합재의 영향 (I) 시멘트 경화체중에서의 Cl-이온의 확산)

  • 김남중;최상흘;정재동;한기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.11-14
    • /
    • 1991
  • Apparent diffusion coefficients of Cl-ions through hardened cement paste(HCP), which were partly substituted blending materials, were determined. Also, pore solution was extracted from HCP which were immersed in NaCl solution, and Cl- concentration of the solution were analyzed. Partly substitution of pozzolanic materials considerably reduced the diffusion rate for Cl-ions and Cl- concentration of pore solution. Binding capacity of Cl- is related to the content of Al2O3 and pozzolanic reactivity.

  • PDF

A Study on Diffusion Behavior in NiFe/Ag Bilayer Films deposited by ion Beam Sputtering Methods (이온빔 스퍼터링 방법으로 증착한 NiFe/Ag 박막의 확산 거동)

  • 지재범;이성래;문대원
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.107-112
    • /
    • 2002
  • We have studied diffusion behavior of NiFe/Ag bilayer deposited by on silicon Ion Beam Sputtering methods. The diffusion behavior of NiFe and Ag in NiFe/Ag thin film is analyzed by Medium Energy Ion Scattering Spectroscopy. For samples without Ta underlayer, silicides such as Ni-Si or Fe-Si were formed at Si substrate and NiFe interface. In contrast, Ag predominantly diffused into the NiFe layer probably through their grain boundaries for Ta underlayered samples.

Microstructural and Mechanical Properties of Carbonitrided Titanium (탄질화타이타늄의 미세조직 및 기계적 특성)

  • Kim, Gang-Hu;Lee, Do-Jae;Lee, Gyeong-Gu;Kim, Myeong-Ho;Park, Beom-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.142-146
    • /
    • 2007
  • 플라즈마 이온 확산법을 이용하여 $N_2$ $CH_4$와 Ar의 기체 혼합물로부터 탄절화 타이타늄을 제조하였다.. 타이타늄 합금에 형성된 탄질화 타이타늄은 증착온도가 증가할수록 TiCN(200)으로 우선성장 하였고, 온도에 증가함에 따라 탄질화층의 두께도 증가하는 경향이 나타났으며, 미소경도의 증가와 좋은 내마모성특성이 나타났다.

  • PDF

Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries (리튬이온전지용 TiO2 나노튜브 음전극 특성)

  • Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.283-291
    • /
    • 2010
  • In this review, the studies on the electrochemical properties of $TiO_2$ nanotube as an anode material of lithium-ion battery, which was prepared by an alkaline hydrothermal reaction and anneling process, were investigated andanalyzed in terms of charge-dischage characteristics. Up to date, a maximum discharge capacity of $338mAh\;g^{-1}$(x=1.01) was achieved by the nanotube with $TiO_2(B)$ phase, whereas the theoretical capacity of $TiO_2$ anode was $335mAh\;g^{-1}$(x=1) in the basis of $Li_xTiO_2$ as a product of electrochemical reaction between $TiO_2$ and lithium. This was due to fast lithium transport by a shortened diffusion path provided by controlling the nanostructure of $TiO_2$, because the self-diffusion of lithium was slow in a basis of its activation energy as 0.48 eV. Due to an excellent ion storage capabilities in both the surface and the bulk phase, the $TiO_2$ nanotube could be a promising active material as both an anode of lithium-ion battery and an electrode of capacitor with high-rate performances.

Stability Characteristics of Sn Species Behavior on Surface of a Sn-modified Pt Electrode for Electrolytic Reduction of Nitrate Ion (질산염 이온의 전해 환원을 위한 Sn-modified Pt 전극 표면에서의 Sn 안정성 거동 특성)

  • Kim, Kwang-Wook;Kim, Seong-Min;Kim, Yeon-Hwa;Lee, Eil-Hee;Jee, Kwang-Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.433-441
    • /
    • 2007
  • This work investigated the stability of a Sn-modified Pt electrode, which was used for reduction of nitrate, fabricated by an adsorption or electro-deposition of Sn on Pt. In order to find the causes for instability of the electrode, the effects of the solutions in which the electrode was used and the potential applied to the electrode on the electrochemical and metallurgical behaviors of Sn on Pt were studied. The Sn of freshly- prepared modified-Sn Pt electrode existed as Sn hydroxide form, which brought about an easy loss of the electro-activity of the electrode even staying in water, especially in acid solution. When the Sn-modified Pt electrode was used for the reduction of nitrate, the electro-activity of the electrode was affected depending on the potential applied to the electrode. When a more negative potential than the redox equilibrium potential between $Sn(OH)_2$ and Sn was applied to the electrode, the Sn hydroxide was converted to Sn that could diffused into Pt, which leaded to the loss of electro-activity of the electrode as well. The solid diffusion of Sn increased linearly with the applied potential. The Sn-electrodeposited Pt electrode which had more Sn on the electrode was more favorable to maintaining the integrity of the electrode during the reduction of nitrate than the Sn-adsorbed Pt electrode prepared in the under-potential deposition way.

The Effects of Silica Sol and Modified Latex on the Concrete Surface Protection Cement Mortar for Improvement of Durability of Concrete (콘크리트 내구성 향상을 위한 표면 보호용 시멘트 모르타르에서 실리카 및 개질 라텍스의 영향)

  • Kim, Yong-Hoon;Jeaong, Cheol-Soo;Song, Myong-Shin;Lee, Woong-Geol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.715-722
    • /
    • 2019
  • The durability of concrete structures deteriorates due to the corrosion of rebars and concrete deterioration by harmful ions (CO32-, Cl-, SO42-) penetrating and diffusing from the outside into concrete. Therefore, the use of surface-protection finishing mortar is very important for preventing or delaying the deterioration of concrete. In this study, the possibility of the prevention of deterioration or delay of deterioration of concrete was investigated using natural latex modified with silica sol and calcium ions for cement mortar, which can be used to repair the mortar of deteriorated concrete or for finishing the mortar of concrete. As a result, fine calcium silicate hydrate was formed in the pores of the cement material due to the calcium ions and silica sol components contained in the modified latex component that reduce the pore distribution of the cement mortar, thereby reducing the penetration and diffusion of harmful ions (CO32-, Cl-, and SO42-). Furthermore, the latex component was found to be present in the pores of the cement to improve the alkali resistance and carbonation resistance.

A Study on the Resistve Switching Characteristic of Parallel Memristive Circuit of Lithium Ion Based Memristor and Capacitor (리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구)

  • Kang, Seung Hyun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.41-45
    • /
    • 2021
  • In this study, in order to secure the high reliability of the memristor, we adopted a patterned lithium filament seed layer as the main agent for resistive switching (RS) characteristic on the 30 nm thick ZrO2 thin film at the device manufacturing stage. Lithium filament seed layer with a thickness of 5 nm and an area of 5 ㎛ × 5 ㎛ were formed on the ZrO2 thin film, and various electrode areas were applied to investigate the effect of capacitance on filament type memristive behavior in the parallel memristive circuit of memristor and capacitor. The RS characteristics were measured in the samples before and after 250℃ post-annealing for lithium metal diffusion. In the case of conductive filaments formed by thermal diffusion (post-annealed sample), it was not available to control the filament by applying voltage, and the other hand, the as-deposited sample showed the reversible RS characteristics by the formation and rupture of filaments. Finally, via the comparison of the RS characteristics according to the electrode area, it was confirmed that capacitance is an important factor for the formation and rupture of filaments.