• 제목/요약/키워드: 이온제거

검색결과 1,299건 처리시간 0.026초

과황산나트륨을 이용한 내분비계장애물질 산화제거 (Oxidation of Endocrine Disrupting Chemicals Using Sodium Persulfate)

  • 임찬수;윤여복;김도군;고석오
    • 대한토목학회논문집
    • /
    • 제33권2호
    • /
    • pp.609-617
    • /
    • 2013
  • 본 연구에서는 역삼투 공정 농축수에 존재할 수 있는 내분비계 장애물질의 처리에 있어, 고급산화 공정의 적용가능성을 다양한 조건하에서 평가하였다. 오염물 제거에는 Fe(II)를 촉매로 한 과황산나트륨 산화를 이용하였으며, 초기 pH와 이온강도 등, 영향인자에 따른 산화능을 검토하였다. Fe(II) 촉매 과황산나트륨에 의한 $17{\alpha}$-ethynylestradiol(EE2) 제거효율은 초기 pH와 이온강도가 증가할수록 감소하였다. 반면, 이온강도 물질로 염소이온과 같은 할로겐족 이온을 적용 시 산화반응에 긍정적인 영향을 나타냈는데, 이는 라디칼 전이에 따른 영향으로 판단된다.

축전식 탈염에서 정전압과 정전류 운전에 따른 질산 이온의 선택적 제거율 비교 (Comparison of Selective Removal of Nitrate Ion in Constant Voltage and Constant Current Operation in Capacitive Deionization)

  • 최재환;김현기
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.269-275
    • /
    • 2015
  • 질산이온 선택성 탄소전극(NSCE, nitrate-selective carbon electrode)에서 전원공급 방식에 따른 이온들의 흡착특성을 분석하였다. 질산이온에 선택성이 높은 음이온수지 분말을 탄소전극에 코팅하여 NSCE를 제조하였다. 질산과 염소이온의 혼합용액에 대해 정전압(CV, constant voltage)과 정전류(CC, constant current) 모드에서 축전식 탈염(CDI, capacitive deionization)을 실시하였다. 이온들의 총 흡착량은 CV 모드로 운전한 경우 CC 모드에 비해 약 15% 증가하였다. 혼합용액에서 질산이온의 비율은 26%로 낮았지만 흡착된 질산이온의 몰비율은 최대 58%로 나타나 NSCE가 질산이온을 선택적으로 제거하는데 효과적임을 확인하였다. CC 모드에서 운전한 경우 흡착된 질산이온의 몰비율은 흡착기간 동안 55~58%로 일정하였다. 반면 CV 모드에서는 30~58%로 큰 차이를 보였다. 이를 통해 셀에 공급되는 전류가 질산이온의 선택적 제거율을 결정하는데 중요한 인자임을 알 수 있었다.

폐유지로부터 이온교환수지 촉매에 의한 유리지방산 전환 최적화 (Optimization of Ion exchange Catalyst for Free Fatty Acid in used oil)

  • 장덕례;김민규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.260-262
    • /
    • 2008
  • 최근 고유가의 지속과 국제적인 환경 규제에 대응하기 위하여 환경친화적인 대체연료의 개발이 시급한 가운데 재생가능한 동식물성 유지로부터 생산되는 바이오 디젤에 대한 연구가 활발히 진행되고 있다. 특히 자원 재활용 및 에너지 생산관점에서 폐유지로부터 바이오디젤 원료로 사용하는 연구가 활발히 진행되어 왔다. 이러한 폐유지로부터 바이오디젤을 효율적으로 생산하기 위해서는 폐유지내 함유되어 있는 유리지방산을 전처리공정에서 산촉매에 의한 에스테르화 반응에 의해 전환제거하고자 한다. 본 연구에서는 폐유지내 함유된 유리지방산 전환제거에 효과적인 불균일계 이온교환수지 촉매를 이용하여 공정변수 즉 사용된 촉매의 양, 반응온도, 유리지방산 농도에 따른 유리지방산 전환제거특성을 조사해 보았다. 또한 각각의 반응조건에서 속도상수를 계산하여 이온교환수지 촉매를 사용한 유리지방산 전환 제거에 필요한 활성화 에너지 값을 구하였다.

  • PDF

활성탄을 이용한 방사성 폐액중 코발트의 제거특성

  • 강문자;김준형;윤봉요;김철
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 춘계학술발표회 초록집
    • /
    • pp.126-129
    • /
    • 1994
  • 이온에 대한 선택적인 흡착능력이 있는 활성탄을 사용하여 방사성폐액중의 $^{60}$Co의 제거특성을 살펴보았는데, 40-70메시크기의 활성탄은 폐액에대해 0.002g/m1 사용하면 98%의 제거율을 얻을 수 있었고 폐액내의 코발트 농도가 7.5$\times$$10^{-2}$ppm이하이면 98%이상의 제거율을 나타내었다. 그리고 활성탄에대한 코발트이온의 흡착에 나트륨, 세슘이온은 전혀 영향을 주지 않았으며 니켈은 코발트와 같은 정도로 흡착되었고 철은 코발트보다 흡착특성이 좋음을 알 수 있었다.

  • PDF

연속식 전기탈이온 장치의 원리와 기술 동향 (Principles and Current Technologies of Continuous Electrodeionization)

  • 문승현;송정훈
    • 멤브레인
    • /
    • 제16권3호
    • /
    • pp.167-181
    • /
    • 2006
  • 전기탈이온 시스템은 전기투석과 이온교환수지법의 혼합 공정으로서 외부전기장 하에서의 이온교환매개체를 통해 이온이 제거되어 고순수를 제조할 수 있도록 고안된 장치이다. 전기탈이온 장치는 이온의 제거 메커니즘과 이온교환 매개체의 전기적 재생 메커니즘으로 설명되며 이를 이용하여 희석조의 성능을 최적화하는 것이 시스템의 효과적인 사용을 위해서 필요하다. 또한 전기탈이온 장치의 다양한 분야에서의 적용을 위해서는 스택구성을 다양하게 변경하여 적용가능성을 판단하는 것이 필요하다. 이를 효과적으로 달성하기 위해서는 기존에 제시되었던 다양한 시스템 특성분석법과 이동현상 관련 수식들을 이해하여 전기탈이온 스택구성에 적용하는 것이 무엇보다 중요하다. 본 총설에서는 전기탈이온 장치의 최적화를 위해 필요한 기초 이론들과 방법들에 대해서 살펴보고 현재의 연구동향에 대해서 고찰하여 분리공정으로서의 이해를 높이고자 하였다.

톱밥을 이용한 중금속 제거에 관한 연구 (Heavy Metal Removal using Sawdust)

  • 전충;김정환
    • 유기물자원화
    • /
    • 제15권2호
    • /
    • pp.81-88
    • /
    • 2007
  • 톱밥을 이용한 중금속 제거에 관한 연구가 수행되어졌다. 납, 구리, 카드뮴 이온들 중에서 납의 흡착능이 pH 4에서 0.22 mmol/g-dry mass로서 가장 높았다. 톱밥의 표면상태와 납이온의 존재 여부는 FT-IR, SEM(Scanning Electron Microscopy) 그리고, EDX(Energy Dispersive X-ray)에 의해서 확인되어졌다. 초기 납 농도가 100ppm일때 0.5g의 톱밥으로 약 90%의 납 이온을 제거할 수 있었다. Langmuir model 식을 이용하여 납 이온에 대한 등온흡착선을 묘사하였으며 실험결과는 모델식에서 얻어진 결과와 잘 부합되었다. 또한 대부분의 흡착은 60분 내에 이루어졌으며 납 이온 용액의 pH는 5.8에서 4.5로 시간에 따라 감소하였다.

  • PDF

생물 고분자를 이용한 중금속 제거에 대한 고찰 (Review on Heavy Metal Removal Using Biopolymer)

  • 전충
    • 유기물자원화
    • /
    • 제16권2호
    • /
    • pp.38-46
    • /
    • 2008
  • 미생물의 세포벽을 구성하는 많은 생물고분자들이 금속이온의 흡착과 이온교환에 주된 역할을 한다는 사실이 연구자들에 의하여 보고되어져왔다. 미생물로부터 유도되어지는 생물고분자들은 이온교환수지나 킬레이팅 수지와 같은 합성 고부나들이 상업적인 흡착제로서 널리 사용되고 있지만, 산업적인 적용에서 다양한 금속 이온들을 회수하기 위한 생물 흡착제로서 유용하다. 이 연구에서는 금속을 제거하는데 유용하고 상업적인 생물고분자들이 소개되어질 것이다.

  • PDF

음이온 평형 및 칼럼교환 선택도 특성 (Selectivity Characteristics for Equilibrium and Column Anion Exchanges)

  • 이인형;이석중
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2002년도 춘계학술발표논문집
    • /
    • pp.137-139
    • /
    • 2002
  • 이온교환은 액체상 이온과 고체상 이온간의 화학반응이며 연수 및 탈염공정, 특정물질의 제거 및 회수, 토양을 통한 이온성 물질의 이동에서 널리 이용되고 있다. 이온교환수지는 이온교환시 원자가가 높을수록, 수화반경이 작을수록, 이온농도가 낮을수록 증가한다. 본 연구는 이온교환수지에 대한 평형실험을 선택도가 칼럼실험에 적용되는지 조사하였다. 이 실험치 결과에서 음이온 교환수지의 선택도 순서는 OH/sup -/ < F/sup -/ < HCO₃/sup -/ < Cl/sup -/ < Br/sup -/ ≤ No₃/sup -/ < So₄/sup 2-/ 이였으며, 음이온 칼럼 교환도 동일하였다. 또한 바탕 양이온의 가수가 높을수록 이온교환이 빠르게 진행됨을 알 수 있다.

양액재배 용수 중의 $\textrm{HCO}_2$ 이온 제거를 위한 산 첨가의 효과와 효과적인 산 처리방법 (Effectiveness of Acid Injection as a Method to Remove $\textrm{HCO}_2$ in Hydroponic Water)

  • 정종운;황승재;정병룡
    • 생물환경조절학회지
    • /
    • 제11권4호
    • /
    • pp.188-192
    • /
    • 2002
  • 양액재배 용수 내에 HCO$_3$$^{-}$(중탄산 이온)이 많이 존재하면 배지의 pH가 높아져서 알칼리성이 되고 다른 유용 이온의 용해도와 흡수를 저해하므로 중탄산 이온의 제거를 위한 적절한 방법이 필요하다. 중탄산 이온을 제거하기 위해 실제 농가에서 사용하고 있는 용수를 재료로 산 용액(HNO$_3$, H$_3$PO$_4$ 및 H$_2$SO$_4$)의 첨가법을 이용하여 중탄산 이온을 처리하였다. 적정기를 이용하여 처리 전과 후 시료의 중탄산 이온을 적정한 결과 산의 첨가량에 비례해서 중탄산 이온 농도가 감소하였다. KHCO$_3$을 3차 증류수에 첨가하여 50, 100, 150, 200, 250mg.L$^{-}$의 중탄산 용액들을 만들고, 각각 HNO$_3$, H$_3$PO$_4$또는 H$_2$SO$_4$을 일정 비율로 첨가한 결과 pH도 교정되고 중탄산 제거에도 효과적이었다 이 결과에 따라 양액재배를 하고 있는 농가에서 사용하고 있는 용수의 중탄산 이온의 함량을 적정하고 각 산을 첨가한 후 잔류량을 적정한 결과 중탄산 이온의 제거 효과를 보였다.

이온교환수지 분체 특성에 대한 연구 (A Study on Characteristics of Pulverized Ion Exchange Resins)

  • 허재용;구경미;장용원;강상현
    • 멤브레인
    • /
    • 제34권2호
    • /
    • pp.132-139
    • /
    • 2024
  • Total dissolved solids (TDS) 제거에 이용되는 이온교환수지는 컬럼에 충진시켜 사용하게 되는데, 이온교환 과정에서 이온성 물질과 이온교환수지의 충분한 접촉시간을 필요로 한다. 본 연구에서는 이온교환수지의 분체화를 통하여 짧은 접촉시간으로도 높은 TDS 제거 성능을 보이는 이온교환수지의 특성을 연구하였다. 흐름성 등을 고려한 분체의 최적 크기는 100 ㎛ 이상임을 확인하였고, 250~500 ㎛d와 100~250 ㎛ 크기의 최대 분쇄 수율은 각각 67.3%와 36.9%였다. 또한 100~500 ㎛ 크기의 분쇄 수율은 분쇄 시간 2분에서 87.1%로 나타났다. 회분식(batch) 실험 조건에서 250~500 ㎛ 크기의 분체가 95%와 99%의 제거율에 도달하는 시간은 분쇄 전(non-pulverized) 이온교환수지에 비해 각각 1.82배와 1.96배 더 빨랐다. 100~250 ㎛ 크기의 분체는 각각 15.9배와 6.18배 더 빨랐다. 컬럼 테스트의 경우 분쇄 전 이온교환수지는 총 1.74 g, 250~500 ㎛ 크기의 분체는 1.83 g, 100~250 ㎛ 크기의 분체는 1.63 g의 NaCl을 제거하였다. 분체의 크기가 작아질수록 용량(capacity)이 약간 감소한 것으로 나타났다. 결과적으로 분체화된 이온교환수지를 사용하는 것이 접촉시간 대비 높은 TDS 제거 성능을 얻을 수 있는 방법임을 확인하였다.