• 제목/요약/키워드: 이온전도성

검색결과 488건 처리시간 0.026초

탄소 부극에서 초기 충전온도별 부동태 피막 형성에 대한 연구 (Studies on Formation of Passivation Film on KMFC Anode with Initial Charge Temperature)

  • 박동원;김우성;최용국
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.507-512
    • /
    • 2005
  • 리튬 이온 2차 전지의 부극으로 사용되는 탄소전극은 초기 충전시 전극 표면에 Solid Electrolyte Interphase (SEI)라고 불리는 부동태 피막을 형성한다. 초기 충전과정에서의 용매분해로 형성된 막은 충방전 용량에 큰 영향을 주는 것으로 조사되었다. 본 연구에서는 Kawasaki Mesophase Fine Carbon 부극과 1 M $LiPF_6,EC:DEC$ (1:1, 부피비)에 $Li_2CO_3$를 첨가하여 전극/전해질 계면에서 초기충전 온도에 따라 형성되는 부동태 피막의 전기화학적 특성을 시간대 전압법, 순환 전압-전류법, 임피던스법을 이용하여 조사하였다. 관찰된 결과에 따르면, 용매분해 반응이 일어날 때 리튬 이온의 전도도에 따라 용매분해 전위가 달라졌으며, 저온으로 갈수록 $Li^+$ 이온의 전도성이 떨어져 분해 전위 차이가 나타남을 알았다. 또한 여러 온도조건에서 초기 충전시 형성된 피막의 저항은 온도별로 달라짐을 확인하였다.

Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성 (Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes)

  • 김영완;최병구;안순호
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.382-388
    • /
    • 2000
  • 이온전도도가 높으며 균일하고 또 기계적 강도와 전기화학적 안정성이 우수한 전해질막을 얻기 위하여 poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP) 공중합체를 전해질의 지지체로 선택하고, LiClO$_4$ 염이 포함된 ethylene carbonate (EC)와 ${\gamma}$-butyrolactone (GBL)의 흔합용매를 사용하여 겔-전해질을 제조하였다. 다양한 조성의 겔-전해질에 대하여 이온전도도, 열분석 및 선형주사전위 실험을 수행하였다. 이온전도도는 30PVdF-HFP+7.8LiClO$_4$+62.2EC/GBL 전해질막에서 3.8$\times$$10^{-3}$ S$cm^{-1}$ /로 가장 높았다. 열분석 결과에서 대부분의 시료는 대략 10$0^{\circ}C$ 정도까지는 안정하였으며, 특히 염은 고분자 사슬과 민감하게 반응하여 PVdF 결정질의 고온용융점을 낮추는 건을 확인하였다. 리튬 금속과 전해질 사이의 부식에 의해 생성된 부동태막에 의해 계면저항이 시간에 따라 계속적으로 증가하는 것을 확인하였으며, anodic stability는 대략 4.5 V vs. Li까지 안정한 것으로 측정되었다.

  • PDF

염료감응 태양전지의 성능을 위한 녹말의 영향 (Influence of starch on the performance of dye-sensitized solar cells)

  • 정영삼;배준석;정원철;김동환;윤수용;김서현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.51-51
    • /
    • 2011
  • 1991년 스위스연방기술원(EPFL) 화학과 교수 Michae Gratzel이 발명한 염료감응 태양전지 (DSSC)는 값싼 원료와 저가공비 면에서 가장 경쟁력 있는 기술의 하나로 큰 기대를 받고 있다. 염료감응 태양전지의 특징은 전극기판의 재료나 염료를 바꿈으로서 형상이나 색체에 다양성을 갖도록 할 수 있다. 일반적인 염료감응 태양전지의 원리는 태양광이 염료 분자에 흡수, 염료는 여기상태가 되어 전자를 n형 반도체인 $TiO_2$의 전도대로 흘리고, 전자는 TCO전극으로 이동하여 외부 부하에 전기 에너지를 전달하고 상대전극으로 이동, 염료는 $TiO_2$에 전달한 전자 수만큼 전해질로부터 전자를 공급 받아 원래의 상태로 돌아가게 되는 원리에 의하여 발전된다. 전해질로는 $I^-/I_3^-$와 같이 산화-환원 종으로 구성되어 있으며, $I^-$ 이온의 source로는 LiI, NaI,이미다졸리움 요오드 등이 사용되며, $I_3^-$는 이온은 $I_2$를 용매에 녹여 생성시킨다. 전해질 매질은 acetonitrile과 같은 액체 또는 PVdF와 같은 고분자가 사용될 수 있다. 액체형의 경우 산화-환원 이온 종이 매질 내에서 신속하게 움직여 염료의 재생을 원활하게 도와주기 때문에 높은 에너지 변환 효율이 가능하지만, 전극 간의 접합이 완벽하지 못할 경우 누액의 문제를 가지고 있다. 반면, 고분자를 매질로 채택할 경우에는 누액의 염료는 없지만 산화-환원 종의 움직임이 둔화되어 에너지 변환 효율에 나쁜 영향을 줄 수 있다. 따라서 고분자 전해질을 사용할 경우에는 산화-환원 이온 종이 매질 내에서 신속하게 전달 될 수 있도록 설계하는 것이 필요하다. 본 연구는 염료감응 태양전지에서 가장 큰 문제가 되고 있는 고체 전해질의 산화-환원 이온 종이 매질 내에서 신속하게 전달 될 수 있도록 dimethylsulfoxide solvent 에 녹말 일정량을 녹여 Starch-$I_2$ complex 를 시켜주므로, 광 전압{\cdot}{\cdot}$전가 증가되었으며, 전지의 안정성이 향상되었다.

  • PDF

표면전극 형성 방법과 이온-교환막 두께가 이온성 고분자-금속 복합체(IPMC) 구동에 미치는 영향 (Effect of the Surface Electrode Formation Method and the Thickness of Membrane on Driving of Ionic Polymer Metal Composites (IPMCs))

  • 차국찬;송점식;이석민;문무성
    • 폴리머
    • /
    • 제30권6호
    • /
    • pp.471-477
    • /
    • 2006
  • 이온성 고분자-금속 복합체(ionic polymer metal composite, IPMC)는 낮은 구동 전압에서도 비교적 빠른 응답 속도를 갖는 전기활성고분자(electro active polymer, EAP) 재료이다. IPMC는 인간의 근육과 유사한 인성 및 변형 특성을 나타내므로 최근 인공근육용 구동체 개발을 위한 많은 연구들이 진행되어 왔으며, 또한 우주항공, 센서 및 펌프 등의 다양한 분야에서 적용가능성이 조사되고 있다. 본 연구에서는 액상 내피온을 이용하여 용액 캐스팅 방법으로 다양한 두께의 내피온 막을 제조하는 방법을 도입하였다. IPMC 제조방법은 Oguro가 제안한 방법을 기초로 하여 도금온도를 변화시켜 무전해 도금법을 이용하여 내피온 내부로의 1차 전극을 형성시켰으며, 형성된 1차 전극의 안정성과 표면전기저항을 낮추기 위하여 이온빔보조증착법(ion beam assisted deposition, IBAD)을 도입하여 금과 이리듐을 1차 전극표면 위에 증착하여 2차 전극을 형성시켰다. 1, 2차 무전해 도금한 IPMC와 2차 IBAD 코팅한 IPMC 전극의 표면과 단면 형상을 SEM으로 관찰하였으며, 전압을 인가할 때 IPMC 내부의 수분증발 및 이온전도도의 변화를 조사하였다. 또한 다양한 두께의 IPMC를 제조하여 두께변화에 따른 변위와 구동력을 측정하였다.

LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$계 유리고체전해질에 관한 연구 (Studies on LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$ based Glassy Solid Electrolytes)

  • 박강석;강은태;김기원;한상목
    • 한국재료학회지
    • /
    • 제3권6호
    • /
    • pp.614-623
    • /
    • 1993
  • 높은 알칼리량을 함유하는 LiF-$Li_{2}O-B_{2}O_{3}-P_{2}O_5$계 유리의 전기적 특성을 분석하였다. $Li_{+}$ 이온은 모두 전기전도에 기여하지 않으나 조성에 따른 전기전도도의 변동은 약전해질 모델을 따르지 않았다. 또한 이동이온의 농도를 구하는데 사용되는 승법칙(power law)의 적용이 가능하지 않았다. 이들 계에서 조성에 따른 전기전도도의 변동은 유리내에서의 이동 가능한 $Li^{+}$이온의 농도변화만으로 또는 이동도의 변화만으로는 설명할 수 없었다. 전도도의 향상은 $(B-O-P)^{o}$ 보다 $Li^{+}$이온의 확산에 부가적인 자리를 제공하는$(B-O-P)^-,di^-$, 및 metaborate가 형성된 것과 관련이 있었다. 전기전도성이 가장 좋은 조성의 $150^{\circ}C$에서의 전기전도도는 $2.43 \times 10^{-4}$S/cm였고 분해포텐샬은 5.94V, emf는 3.14V였고 에너지 밀도는 22Wh/Kg이었다.

  • PDF

전기방사를 이용한 리튬 이차전지용 양극활물질 Li[Fe0.9Mn0.1]PO4 나노 섬유의 합성 및 전기화학적 특성 (Synthesis and Electrochemical Properties of Li[Fe0.9Mn0.1]PO4 Nanofibers as Cathode Material for Lithium Ion Battery by Electrospinning Method)

  • 김청;강충수;손종태
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.95-100
    • /
    • 2012
  • 올리빈 구조를 가지는 $LiFePO_4$ 양극활물질은 낮은 가격과 안정성으로 인해 리튬 이차전지 시장에서 큰 관심을 받고 있다. 그러나 낮은 이온 전도도와 작동전압 때문에 상업적으로 이용되기엔 사용분야의 응용에 제한이 있다. 이러한 문제를 해결하기 위해서 철 양이온을 망간 양이온과 같은 전이금속으로 치환함으로써 작동전압을 높이는 연구가 시행되고 있다. 또한 미세구조의 나노화를 통해 리튬 이온의 확산거리를 짧게 만들어 줌으로써 이온 전도도를 높여주는 연구도 진행 중이다. 그래서 이번 연구에서는 이온의 확산거리를 짧게 만들어 주기 위해 표면적을 넓힐 수 있는 전기방사를 이용해 물질을 합성하였고, 이를 확인하기 위하여 시차주사현미경 관측을 통해 균일한 나노 섬유의 형성을 확인하였다. 또한 결정구조를 관찰하기 위해 X-선 회절 분석을 하였는데, 다른 상의 관찰 없이 단일상의 결정구조를 얻음을 확인하였다. 전기화학적 성능 확인방법으로는 충방전 테스트기를 이용하여 초기 충방전 곡선을 분석하였고, 계면저항 및 리튬 양이온의 확산을 알아보기 위해 임피던스 측정을 실행하였다.