• 제목/요약/키워드: 이어도

검색결과 5,485건 처리시간 0.08초

이어도 기지에서 관측된 파랑 자료로부터 주변 대표파랑 자료로의 복원기술 검토

  • 이정렬;이동영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1439-1444
    • /
    • 2004
  • 이어도 기지에서 관측된 파랑 자료는 주변 수중 암초 또는 지형의 영향을 받으므로 수중 암초의 영향을 받지 않는 지역을 대표하는 주변 대표 파랑 자료로의 환산이 필요할 수 있다. 이를 위하여 본 연구에서는 이론적인 쇄파 모형(Lee, 1993)을 통하여 변환기술상 문제점을 파악하고 원형 천퇴에서의 수치실험을 통하여 천퇴 후면에서 파랑의 변형 정도를 파고비를 통하여 분석하였으며 이를 토대로 이어도 수중 암초에서의 파랑 변형이 관측 지점의 파고에 리치는 영향을 평가하였고 그 결과를 관측 치와 비교${\cdot}$분석하였다.

  • PDF

이어도 주변 파고분포에 대한 수리모형실험 (Hydraulic Model Tests for the Distribution of Wave Height around the Ieodo Underwater Rocks)

  • 전인식;심재설
    • 한국해안해양공학회지
    • /
    • 제17권1호
    • /
    • pp.55-59
    • /
    • 2005
  • 본 자료는 과거 이어도 해양과학기지의 건설과 관련하여 건국대학교와 한국해양연구소가 공동으로 수행한 이어도 수중암초 주변의 파랑변형에 대한 수리모형실험 결과이다. 실험은 총 4개의 파향 (NNW, SE, S, SSW) 각각에 대하여 이어도 정상부 주변 16m×18m의 영역에서 1m 간격으로 파고를 계측하였으며, 4개 파향 공히 이어도 정상에서 쇄파가 발생함을 관찰하였다. 이 자료는 기존의 파랑전파 수치모델의 성능개선과 관련하여 국소적 쇄파역에서의 모델성능을 검증하는데 매우 유용하게 사용될 수 있을 것으로 기대된다.

이질적 수신자의 대역폭 효율을 고려한 개선된 SARLM 기법 (An Advanced-SARLM Method for Bandwidth Efficiency of Heterogeneous Receivers)

  • 노주이;구명모;김상복
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.93-96
    • /
    • 2003
  • 화상회의 시스템에서 대역폭의 이용률을 높이기 위한 연구로서 SARLM(Source Adaptive Receiver-Driven Multi-Layered Multicast)이 있다. 이 기법은 레이어의 병합(merging)과 분할(splitting)을 통해 새로운 레이어(layer)의 수와 각 레이어의 전송률을 결정하는데, 레이어의 병합 시 전체 수신자의 가용 대역폭(available bandwidth)의 이용률이 낮아지는 현상이 발생한다. 본 논문에서는 레이어의 병합 시 수신자의 가용 대역폭의 이용률을 개선한 기법을 제안한다. 제안하는 기법은 특정 레이어를 수신하는 수신자가 아주 적은 경우 하위 레이어의 수신자중 전송률의 많은 증가를 요청하는 수신자와 병합하고, 하위 레이어를 재그룹핑(regrouping) 한다. 실험 결과, 레이어의 병합 시 전체 수신자의 대역폭 이용률을 향상시킬 수 있었다.

  • PDF

멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 (Korean Dependency Parsing with Multi-layer Pointer Networks)

  • 박천음;황현선;이창기;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.92-96
    • /
    • 2017
  • 딥 러닝 모델은 여러 히든 레이어로 구성되며, 히든 레이어의 깊이가 깊어질수록 레이어의 벡터는 높은 수준으로 추상화된다. 본 논문에서는 Encoder RNN의 레이어를 여러 층 쌓은 멀티 레이어 포인터 네트워크를 제안하고, 멀티 태스크 학습 기반인 멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 모델을 제안한다. 멀티 태스크 학습 모델은 어절 간의 의존 관계와 의존 레이블 정보를 동시에 구하여 의존 구문 분석을 수행한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 의존 구문 분석 연구들 보다 좋은 UAS 92.16%, LAS 89.88%의 성능을 보였다.

  • PDF

멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 (Korean Dependency Parsing with Multi-layer Pointer Networks)

  • 박천음;황현선;이창기;김현기
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.92-96
    • /
    • 2017
  • 딥 러닝 모델은 여러 히든 레이어로 구성되며, 히든 레이어의 깊이가 깊어질수록 레이어의 벡터는 높은 수준으로 추상화된다. 본 논문에서는 Encoder RNN의 레이어를 여러 층 쌓은 멀티 레이어 포인터 네트워크를 제안하고, 멀티 태스크 학습 기반인 멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 모델을 제안한다. 멀티 태스크 학습 모델은 어절 간의 의존 관계와 의존 레이블 정보를 동시에 구하여 의존 구문 분석을 수행한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 의존 구문 분석 연구들 보다 좋은 UAS 92.16%, LAS 89.88%의 성능을 보였다.

  • PDF

비즈니스 프로세스 프레임워크 5-레이어 정보의 메타모델 설계 (Design of Metamodel for 5 Layer Information on Business Process Framework)

  • 서채연;문소영;김동호;김영철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1575-1577
    • /
    • 2012
  • 비즈니스 프로세스 프레임워크(Business Process Framework) 레이어 모델링 정보를 레파지토리에 저장하기위해서는 BPF 5-레이어의 복잡한 구조를 수작업으로 분석해야하는 어려움이 있다. 그래서 각 레이어 모델링 정보를 레파지토리에 효율적으로 저장하기 위해 비즈니스 프로세스 프레임워크 5-레이어 정보 메타모델을 제안한다. 제안한 메타모델 기반으로 레이어 정보를 모델링한다. 모델링된 레이어 정보를 모델변환하여 XMI(XML Metadata Interchange)로 변환하고 그 데이터를 레파지토리에 저장한다. 이 방법을 통해 레이어 정보를 모델링하고, XMI로 변환하면 정보를 쉽고 효율적으로 레파지토리에 저장이 가능하다.

이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016) (Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016))

  • 우혜진;박경애;변도성;이주영;이은일
    • 한국해양학회지:바다
    • /
    • 제23권1호
    • /
    • pp.1-19
    • /
    • 2018
  • 이어도 해양과학기지 유의파고 자료와 인공위성(GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) 고도계 유의파고 자료를 비교하기 위하여 2004년 12월부터 2016년 5월까지 약 12년 동안의 위성-이어도 관측 유의파고 사이의 일치점 데이터베이스를 생산하였다. 위성 유의파고는 이어도 해양과학기지 유의파고에 대하여 약 0.34 m의 평균 제곱근 오차와 0.17 m의 양의 편차를 나타내었다. 위성과 이어도 관측 유의파고 차는 특이한 계절변동이나 경년변동을 보이지 않고 위성이 중복 관측하는 기간에 대해서 유사한 변동 특성을 보여 위성 자료의 일관성을 확인할 수 있었다. 위성-이어도 유의파고 차이에 대한 바람장의 영향을 조사한 결과 모든 위성에 대해 평균적으로 0.17 m 정도의 양의 편차가 나타났다. 지형 및 해양과학기지 구조물의 영향을 파악하기 위하여 파향에 대한 파고 오차의 특이성을 분석하였으나 통계적으로 유의미한 특성이 나타나지 않았다. 위성-이어도 일치점의 거리에 따른 영향을 조사하기 위하여 위성-이어도 간의 거리에 대한 함수로 오차의 특성을 분석한 결과 평균은 거리와 무관하게 0.14 m로 거의 일정하게 유지되는 반면에 오차의 최댓값과 최솟값 사이의 진폭은 이어도로부터 멀어질수록 선형적으로 증가하는 특성이 발견되었다. 반면에 동해 해양기상위성부이를 활용한 위성 유의파고 자료의 정확도 평가 결과, 위성-실측 자료 사이의 평균 제곱근 오차는 0.27 m로 상대적으로 작은 오차가 발생하였으며, 이어도 파고 자료와 같이 특이한 오차 특성은 발견되지 않았다. 이어도 파고 관측 기기의 상이성을 고려하여 이 연구에서는 위성 유의파고 자료를 기반으로 이어도 유의파고 자료를 보정하는 식을 제안하였다. 또한 이어도 해양과학기지가 국제적인 해양관측 기지로 격상되기 위해서는 자료의 신뢰도 확보가 우선되어야 함을 강조하고 방법과 전략을 제시하였다.

이어도 종합해양과학기지에서 관측된 수온과 염분 자료의 특징 (Characteristics of Temperature and Salinity observed at the Ieodo Ocean Research Station)

  • 오경희;박영규;임동일;정회수;심재설
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제9권4호
    • /
    • pp.225-234
    • /
    • 2006
  • 이어도 종합해양과학기지에 설치된 해양환경모니터링시스템을 이용하여 얻은 수온과 염분 자료를 이용하여 이어도 기지주변의 해수 특성과 양자강에서 유출되는 저염분수의 특징, 태풍에 의한 해수 성질 변화를 파악하였다. 수온은 정확도가 매우 높은 반면, 염분자료의 정확도와 안정도는 비교적 낮았다. 여름철 표층에서 강하게 나타나는 수온과 염분의 일변화는 태양일사량의 변화 이외에도 조석에 의한 수층의 수직운동에 의해서 발생하였다. 계절변화는 수온자료에서만 발견되었다. 염분의 가장 큰 변화 원인은 양자강에서 유입되는 담수로 약 $3{\sim}4$일 사이에 최대 8 psu 정도의 변화를 일으킨다. 2003년 8월과 2004년 8월 제주도 남서부 해역에서 저염분수가 발견되기 약 10일 전에 이어도 기지에서도 저염분수가 관측되었으나, 2005년 7월에는 이어도 기지에서만 저염분수가 관측되었다. 즉, 이어도 기지를 통과한 저염분수가 반드시 제주도 근해까지 확장하지는 않는다. 2003년 9월과 2004년 8월에 강력한 태풍이 이어도 기지 근처를 지나갔는데, 태풍에 의한 영향은 약 $3{\sim}4$일 간 지속되었다.

  • PDF

몰포러지 신경망 기반 딥러닝 시스템 (Deep Learning System based on Morphological Neural Network)

  • 최종호
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.92-98
    • /
    • 2019
  • 본 논문에서는 몰포러지 연산을 기본으로 하는 몰포러지 신경망(MNN: Morphological Neural Network) 기반 딥러닝 시스템을 제안하였다. 딥러닝에 사용되는 레이어는 몰포러지 레이어, 풀링 레이어, ReLU 레이어, Fully connected 레이어 등이다. 몰포러지 레이어에서 사용되는 연산은 에로전, 다이레이션, 에지검출 등이다. 본 논문에서 새롭게 제안한 MNN은 기존의 CNN(Convolutional Neural Network)을 이용한 딥러닝 시스템과는 달리 히든 레이어의 수와 각 레이어에 적용되는 커널 수가 제한적이다. 레이어 단위 처리시간이 감소하고, VLSI 칩 설계가 용이하다는 장점이 있으므로 모바일 임베디드 시스템에 딥러닝을 다양하게 적용할 수 있다. MNN에서는 제한된 수의 커널로 에지와 형상검출 등의 연산을 수행하기 때문이다. 데이터베이스 영상을 대상으로 행한 실험을 통해 MNN의 성능 및 딥러닝 시스템으로의 활용 가능성을 확인하였다.

기계학습을 활용한 온라인게임 매치메이킹 개선방안 (Improvement of online game matchmaking using machine learning)

  • 김용우;김영민
    • 한국게임학회 논문지
    • /
    • 제22권1호
    • /
    • pp.33-42
    • /
    • 2022
  • 온라인 게임에서 다른 플레이어와의 상호작용은 플레이어의 만족도에 영향을 미친다. 따라서, 비슷한 수준의 플레이어를 매치시켜 원활한 상호작용을 도모하는 것은 플레이어의 게임 경험을 위해 중요하다. 그러나, 게임의 최종승패로만 플레이어의 평가점수를 증감시키는 현재의 평가 방식으로는 신규 및 복귀 플레이어의 원활한 매칭이 불가능하다. 본 연구에서는 스타크래프트II의 리플레이를 활용하여 매치메이킹 개선을 위한 기계학습 활용방안을 제시한다. 매치메이킹의 기준이 되는 플레이어의 MMR 점수를 예측하는 기계학습 모델을 생성하고 성능을 평가하였다. 모델의 오차는 리그 평균 MMR 점수 범위의 40.4% 수준으로, 제안된 방식을 통해서 플레이어를 실력과 근접한 리그에 즉시 배치할 수 있음을 확인하였다. 또한, 결과에 대한 플레이어의 수용도를 높일 수 있도록 예측의 근거를 도출하는 방안도 제시되었다.