• Title/Summary/Keyword: 이안제

Search Result 28, Processing Time 0.022 seconds

Design Methodology on Steel-type Breakwater II. Pile Design Procedure (철재형 이안제 설계기법 연구 II. 하부기초 설계 단계)

  • Kwon, Oh-Kyun;Oh, Se-Boong;Kweon, Hyuck-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.219-228
    • /
    • 2011
  • In this paper, the design procedure of substructure of the steel-type breakwater was described and the actual foundation design was performed for the test bed. The site investigation was executed at the Osan-port area, in Uljin, Gyeongbuk, where the steeltype detached breakwater is constructed. The foundation mainly depends on the lateral load and uplift force due to the wave force. Since the superstructure is stuck out about 9.0m from the ocean bed, the foundation must resist on the lateral force and bending moment. After considering various factors, the foundation type of this structure was determined by the steel pipe pile(${\varphi}711{\times}t12mm$). On the stability of pile foundation, the safety factors of the pile on the compressive, lateral and uplift forces were grater than the minimum factor of safety. The displacements of pile under the working load were evaluated as the values below the permissible ones. Based on the subgrade reaction method, we evaluated the relationship of subgrade reaction and displacement for the lateral and the vertical directions in the layers. The structural analyses along with the foundation were perfomed and the effect of pile foundations were compared quantitatively.

Design Methodology on the Steel-type Breakwater I.Design Procedure and Wave Pressure Estimation (철재형 이안제 설계기법 연구 I. 설계 및 파압추정 단계)

  • Kweon, Hyuck-Min;Han, Yu-Shik;Kwon, Oh-Kyun;Ko, Kyoung-Lae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.209-218
    • /
    • 2011
  • The present study proposes a new estimation relationship for the transmission rate of the steel breakwater which is expected to make up for the weakness points in existing hard solution for shore protection. The steel breakwater consists of the wave dissipator of the dual horizontal plates, the supporting columns and their foundations, and thus its respective designs should also be conducted one by one. Furthermore, the breakwater has to ensure both functions of shore protection and structure stabilization. The study produced experimental data for the stability and safety investigation of the steel breakwater. The forces acting on the steel breakwater were classified into two categories, one is vertical up and down loads for the pile resistance and the other was maximum difference of the vertical load acting on horizontally different position for the torsion. The study applied the stability force produced by the summation of maximum pressure at each point and the safety force acting on each point simultaneously. The regular wave corresponding to the significant wave was utilized for measuring wave pressure and force. The study showed the method for the proper position of submerged upper plate by considering occurrence frequency of tide level. The design process finally determined by trial and error is proposed in the present study.

A study of stability at the head of a breakwater with directional waves (방향성 파랑의 입사에 따른 이안제 제두부의 안정성에 관한 기초적 연구)

  • 김홍진;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.144-149
    • /
    • 2001
  • The failure at the head section of rubble-mound detached breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes occurring around the head of the rubble-mound detached breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached breakwater. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects. It is clarified that the structure monitored was safely designed for the design wave but the failure was occurred by the reason of breaker waves and scouring processes at the toe 3) It was observed that scouring at the toe developed in the region where steady stream due to vorticity was generated and the spatial variation of scour at the toe of the round head was predominated by incident wave direction.

  • PDF

Analysis of Shoreline Response due to Wave Energy Incidence Using Equilibrium Beach Profile Concept (평형해빈단면 개념을 이용하여 파랑 에너지 유입에 따른 해안선 변동 해석)

  • Kim, Tae-Kon;Lee, Jung-Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.116-122
    • /
    • 2018
  • Dean's equilibrium beach profile formula was used to investigate the correlation between the static shoreline position and the incident wave energy. The effect of the longshore sediment transport was neglected, and the results showed the reasonable agreement compared with the field observations of Yates et al.(2009), which were conducted for almost 5 years on southern California beaches, USA. The shoreline response varies with the scale factor of Dean's equilibrium beach profile. This implies that the shoreline response could be simply estimated using the sampled grain size without laborious long-term field work. Therefore, the present study results are expected to be practically used for the layout design of submerged or exposed detached breakwaters although the further work is required for performance verification. In addition, after laborous mathematical reviews, the linear relation between incident energy and shoreline response, which was obtained from Yates's field study, yielded a clear mathematical equation showing how the beach slope is related to the grain size.

Prediction of Wave-Induced Current Using Time-Dependent Wave Model (쌍곡선형 파랑모형을 이용한 해빈류 예측)

  • 이정만;김재중
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.189-199
    • /
    • 1998
  • Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study, one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mising, radiation stresses, surface and bottom stresses are considered in our current model. Copeland's(1985) relult is used to calculate radiation stress and Berkmeir & Darlymple's(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda's(1974) experimental results for the uniform slope coastal region test and Nishimura & Maruyama's(1985) experimental relults and numerical simulation results for the detached breakwater test. The results from our wave model show good agreement with the others and also show nonlinear effects around the detached breakwater. Wave induced current model is developed in this study and this model shows nonlinear effects around the detached breakwater and can be applied in the surf zone and also consider the friction stresses.

  • PDF

EVP Models for Wave Transformation in Regions of Slowly Varying Depth (EVP방법(方法)을 이용한 완경사(緩傾斜) 영역(領域)에서의 파랑변형(波浪變形) 수치모형(數値模型))

  • Oh, Seong Taek;Lee, Kil Seong;Lee, Chul Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 1992
  • Error vector propagation method is applied to the elliptic mild slope equation in order to reduce the computation time. Results from the elliptic, parabolic, and hyperbolic models are compared with experimental data for an elliptic shoal. Also, results of the elliptic and hyperbolic models are compared with experimental data for a detached breakwater. As a result of applying this model. it is concluded that the present model satisfactorily reduces the computation time compared with other numerical models. In the accuracy of solutions, there are some oscillations but the trend compares well with other models.

  • PDF

A Shoreline Change Model around Coastal Structures (해안구조물 주변에서 해안선변형 예측모형 실험)

  • 이종섭;박일현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 1990
  • A numerical model is developed to predict the shoreline change by the coastal structures constructed. In order to describe the wave deformation at the shadow zone of the structure, the present model employs the mild-slope equation in steady state and the wave ray method using the coefficients of wave refraction, diffraction and shoaling. In the model results of shoreline changes for the various structures. it showed a qualitative agreement with the findings observed in the field such as tombolo, and the response of this model was found to be very sensitive to the longshore distribution of wave heights. It was also applied to a field area. From the results of the application this model is proved to be useful around the complex coastal structures and bottom topography.

  • PDF

Prediction of Wave-Induced Current Using Time-Dependent Wave Model (쌍곡선형 파랑모형을 이용한 해빈류 예측)

  • 김재중;이정만
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.269-280
    • /
    • 1998
  • A Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mixing radiation stresses surface and bottom stresses are considered in our current model. Copeland’s(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda’s(1974) experimental results for the uniform slope coastal region test and Nishimura & Naruyama’s (1985) experimental results and numerical simulation results for the detached breakwater. The results from our wave model and wave model and wave-induced current model show good agreements with the others and also show nonlinear effects around the detached breakwater. The model in this study can be applied in the surf zone considering the friction stresses.

  • PDF

Diffraction Effects of Parabolic Mild-Slope Equations in the Shadow Zone behind a Detached Breakwater (이안제 배후 차폐역에서 포물선형 완경사방정식의 회절효과)

  • 김인철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • The purpose of this study is to observe the applicability of parabolic mild-slope equations allowing relatively large angles of wave propagation based on the use of a Pade approximant or minimax approximation and also the applicability of the models with nonlinearity of diffracted waves in the shadow zone behind coastal structures. To accomplish these objectives, numerical solutions are obtained from the above parabolic models and are compared with the results from Watanabe and Maruyama's(1984) hydraulic model test on the wave field with an impermeable detached breakwater. From this study, it is found that computed wave heights increase for the nonlinear results in comparison to the linear results due to the increased diffraction effect across the geometric shadow boundary. The model with a larger aperture with respect to the principal direction was found to spread laterally to a much greater degree where spreading angle (diffraction effect) is relatively large. which causes a distortion in the overall results due to the error accumulated by the approximation of wave length.

  • PDF

Characteristics of Wave Trasnformation in Gamcheon Harbor (감천항내의 파랑변형 특성)

  • 김재중;김기철;이정만
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.399-408
    • /
    • 1999
  • Copeland’s(1985) hyperbolic mild-slope equation including diffraction refraction and reflection in the wave field is used as a governing equation in this study. The result of Maruyama & Kajima(1985) is used to calculate wave direction and that of Watanabe & Maruyama(1986) is used as a energy dissipation formula. Numerical solutions are obtained by the Leap-Frog scheme and compared with Watanabe & Maruyama’s (1984) hydraulic experimental results and numerical simulation results for the detached breakwater. This wave model is applied to a detached breakwater and compared with Watanabe and Maruyama’s (1984) hydraulic model results to check the characteristics of reflected wave field around a detached breakwater. The distribution of wave height and we phase in front of a detached breakwater is more accurate than the Watanabe and Maruyama’s numerical results. The results from our wave model show good agreements with the others and also show nonlinear effects around the detached breakwater. This model is applied to the Gamcheon harbor of pusan. the field observations were carried out at Pusan harbor wave station in 1986-1995 and the results were accepted as a design wave condition in this study. The wave height and wave period was measured by Dong-A university at one station in the Gamcheon harbor in 1996-1997 and used as a calibration criterion. The measured data were used as input data for the numerical simulation and also compared with simulated results. The numerical simulation shows a fairly good results which considering the effect of topographic characteristics and effect of narrow entrance due to two separated breakwaters in Gamcheon harbor. The wave distribution characteristics inside Gamcheon harbor is quite different with the offshore wave direction and wave period.

  • PDF