• Title/Summary/Keyword: 이선형 모델

Search Result 2,180, Processing Time 0.033 seconds

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 이정기;남동선;양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2000
  • Is this paper, we studied on the automatic speech control system in real-time windows environment using voice recognition. The applied reference pattern is the variable DMS model which is proposed to fasten execution speed and the one-stage DP algorithm using this model is used for recognition algorithm. The recognition vocabulary set is composed of control command words which are frequently used in windows environment. In this paper, an automatic speech period detection algorithm which is for on-line voice processing in windows environment is implemented. The variable DMS model which applies variable number of section in consideration of duration of the input signal is proposed. Sometimes, unnecessary recognition target word are generated. therefore model is reconstructed in on-line to handle this efficiently. The Perceptual Linear Predictive analysis method which generate feature vector from extracted feature of voice is applied. According to the experiment result, but recognition speech is fastened in the proposed model because of small loud of calculation. The multi-speaker-independent recognition rate and the multi-speaker-dependent recognition rate is 99.08% and 99.39% respectively. In the noisy environment the recognition rate is 96.25%.

  • PDF

A Model for Software Effort Estimation in the Development Subcycles (소프트웨어 개발 세부단계 노력 추정 모델)

  • 박석규;박영목;박재흥
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.859-866
    • /
    • 2001
  • Successful project planning relies on a good estimation of the effort required to complete a project, together with the schedule options that may be available. Despite the extensive research done developing new and better models, existing software effort estimation models are present only the total effort and effort (or manpower: people per unit time) function for the software life-cycle. Also, Putnam presents constant effort rate in each subcycles. However, the size of total efforts are variable according to the software projects under the influence of its size, complexity and operational environment. As a result, the allocated effort in subcycle also differ from project to project. This paper suggests the linear and polynomial effort estimation models in specifying, building and testing phase followed by the project total effort. These models are derived from 128 different projects. This result can be considered as a practical guideline in management of project schedule and effort allocation.

  • PDF

Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model (동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석)

  • Lee, Joon-Bae;Yoo, Seung-Jae;Jeong, Min-Soo;Lee, In;Kim, Deog-Kwan;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.297-305
    • /
    • 2011
  • In this study, the aeroelastic analysis of rotorcraft in forward flight has been performed using dynamic inflow model to handle unsteady aerodynamics. The quasi-steady airload model based on the blade element method has been coupled with dynamic inflow model developed by Peters and He. The nonlinear steady response to periodic motion is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim for stability analysis. The aerodynamic and structural characteristics of dynamic inflow model are validated against other numerical analysis results by comparing induced inflow and blade tip deflections(flap, lag). In order to validate aeroelastic stability of dynamic inflow model, lag damping are also compared with those of linear inflow model.

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Cluster Based Fuzzy Model Tree Using Node Information (상호 노드 정보를 이용한 클러스터 기반 퍼지 모델트리)

  • Park, Jin-Il;Lee, Dae-Jong;Kim, Yong-Sam;Cho, Young-Im;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Cluster based fuzzy model tree has certain drawbacks to decrease performance of testinB data when over-fitting of training data exists. To reduce the sensitivity of performance due to over-fitting problem, we proposed a modified cluster based fuzzy model tree with node information. To construct model tree, cluster centers are calculated by fuzzy clustering method using all input and output attributes in advance. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. In the prediction step, membership values are calculated by using fuzzy distance between input attributes and all centers that passing the nodes from root to leaf nodes. Finally, data prediction is performed by the weighted average method with the linear models and fuzzy membership values. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional cluster based fuzzy model tree.

Subspace analysis of Poisson Model to extract Firing Characteristics in Visual Cortex (시각 피질의 발화 특성 추출을 위한 포아송 모델의 부공간 해석)

  • Lee, Youngseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • It has been found through physiological experiments that the visual neurons constituting the human visual cortex do not respond to all visual stimuli, but to a visual stimuli with specific conditions. In order to interpret such physiological experiments, a model that can simulate the firing characteristics of neurons including a linear filter with random gain was proposed. It has been proven through experiments that subspaces are formed. To verify the validity of the implemented model, the distribution of values for two pixels randomly extracted from four different visual stimulus data was observed. The difference between the two distributions was confirmed by extracting the central coordinate value, that is, the coordinate value with the most values, from the distribution of the total stimulus data and the spike ignition stimulus data. In the case of the entire set, it was verified through experiments that the stimulus data generating spikes is a subset or subspace of the entire stimulus data. This study can be used as a basic study related to the mechanism of spikes in response to visual stimuli.

Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model (Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2021
  • The frequency-domain induced polarization (IP) response based on Cole-Cole model is expressed as a simple equation in close form. However, it is difficult to compute the time-domain IP response based on Cole-Cole model or any other relaxation model because it cannot be written in closed form. In this study, using numerical experiments, we compared three numerical methods for calculating the time-domain IP response of the Cole-Cole model asymptotically: series expansion, digital linear filtering and Fourier transform. The series expansion method is inadequately accurate for certain time values and converges very slowly. A digital linear filter specially designed to calculate the time-domain IP response does not present the desired accuracy, especially at later times. The Fourier transform method can overcome the abovementioned problems and present the time-domain IP response with adequate accuracy for all time values, even though more computing time is required.

H Fuzzy Control for Discrete-Time Nonlinear Markovian Jump Systems with Time Delay (시간지연을 갖는 이산 비선형 마코비안 점프 시스템의 H 퍼지 제어)

  • Lee, Kap-Rai;Lee, Kyung-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.779-786
    • /
    • 2009
  • This paper deals with $H_{\infty}$ fuzzy control problem of discrete-time nonlinear Markovian jump systems with time delay. The Takgi and Sugeno fuzzy model is employed to represent a delayed nonlinear system that possesses Markovian jump parameters. A stochastic mode dependent Lyapunov function is employed to analyze the stability and $H_{\infty}$ disturbance attenuation performance of the Markovian jump fuzzy system with time delay. Stochastic Lyapunov function is dependent on the operation modes of the system. A sufficient condition for the existence of fuzzy $H_{\infty}$ controller are given in terms of matrix inequalities. Also numerical example is presented to illustrate the efficient of the proposed design methods.

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.