• Title/Summary/Keyword: 이선형 모델

Search Result 2,176, Processing Time 0.031 seconds

An Analysis on Inundation Characteristics of Urban Watershed according to Variation in Return Period of Design Rainfall (설계 강우량의 재현빈도 변화에 따른 도시유역의 침수특성 분석)

  • Park, InHyeok;Ha, SungRyong
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2013
  • This study aims to investigate inundation characteristics such as inundated area, inundation depth according to variation in return period of design rainfall and to draw a comparison between the inundation characteristics by adapting design storm using dual-drainage model. Lidar data is used to construct terrain data with $1m{\times}1m$ resolution in Cheongju. The designed storm by return periods(10year, 30year, 50year and 200year) are acquired from Intensity Duration Frequency curve, which are distributed in 5 minutes interval using Huff's method. As a results, the inundation volume is linearly increased, but inundated area is gradually increased in accordance with swell of return period for design storm. On the other hands, as a result of calculating discharge capacity for each points, deficit of discharge capacity is not observed using designed storm of 10 year return period at every points. If the return period is increased up more than 10 years, both the deficit of discharge capacity for each PT and entire study area are enlarged drastically.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

Proposal of a New Design Method of the Pile-Bent Structure Considering Plastic Hinge (단일 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.91-101
    • /
    • 2011
  • In this study, a new design method of Pile-Bent structure considering plastic hinge was proposed on the basis of the beam-column model. To obtain the detailed informations, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Base on this study, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio ($D_c/D_p$) and normalized lateral cracking load ratio ($F/F_{Dc=Dp}$). Moreover, through comparisons with field cases to find out in-depth limit in which minimum concrete-steel ratio could be applied, in-depth limits ($L_{As=0.4%}$) normalized by the pile length ($L_p$) proportionally decrease as the pile length ($L_p/D_p$)increases up to $L_p/D_p=17.5$, and beyond that in-depth limit converges to a constant value (${\simeq}0.3$).

Acoustic Feedback and Noise Cancellation of Hearing Aids by Deep Learning Algorithm (심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1249-1256
    • /
    • 2019
  • In this paper, we propose a new algorithm to remove acoustic feedback and noise in hearing aids. Instead of using the conventional FIR structure, this algorithm is a deep learning algorithm using neural network adaptive prediction filter to improve the feedback and noise reduction performance. The feedback canceller first removes the feedback signal from the microphone signal and then removes the noise using the Wiener filter technique. Noise elimination is to estimate the speech from the speech signal containing noise using the linear prediction model according to the periodicity of the speech signal. In order to ensure stable convergence of two adaptive systems in a loop, coefficient updates of the feedback canceller and noise canceller are separated and converged using the residual error signal generated after the cancellation. In order to verify the performance of the feedback and noise canceller proposed in this study, a simulation program was written and simulated. Experimental results show that the proposed deep learning algorithm improves the signal to feedback ratio(: SFR) of about 10 dB in the feedback canceller and the signal to noise ratio enhancement(: SNRE) of about 3 dB in the noise canceller than the conventional FIR structure.

A Broadband FIR Beamformer for Underwater Acoustic Communications (수중음향통신을 위한 광대역 FIR 빔형성기)

  • Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2151-2156
    • /
    • 2006
  • Beamforming for underwater acoustic communication (UAC) is affected by the broadband feature of UAC signal, which has relatively low currier frequency as compared to the signal bandwidth. The narrow-band assumption does not hold good in UAC. In this paper, we discuss a broadband FIR beamformer for UAC using the baseband equivalent way signal model. We consider the broadband FIR beamformer for QPSK UAC with carrier frequency 25kHz and symbol rate 5kHz. Array geometry is a uniform linear way with 8 omni-directional elements and sensor spacing is the half of the carrier wavelength. The simulation results show that the broadband n beamformer achieves nearly optimum signal to interference and noise ratio (SINR) and outperforms the conventional narrowband beamformer by SINR 0.5dB when two-tap FIR filter is employed at each sensor and the inter-tap delay is a quarter of the symbol interval. The broadband FIR beamformer performance is more degraded as the FIR filter length is increased above a certain value. If the inter-tap delay is not greater than half of the symbol period, SINR performance does not depend on the inter-tap delay. More training period is required when the inter-tap delay is same as the symbol period.

Relationship between fracture distribution and the acidity of mine drainage at the Il-Gwang Mine (일광광산의 절리분포 특성과 광산배수 산성도의 관계)

  • Choi, Jae-Young;Um, Jeong-Gi;Kwon, Hyun-Ho;Shim, Yon-Sik
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.425-436
    • /
    • 2010
  • We established a stochastic 3-D fracture network system for fractured rock masses located in Il-Gwang Mine, Busan, to explore the relationship between the acidity of mine drainage and fracture geometry. A field scanline survey and borehole image processing were performed to estimate the best probability distributions of fracture geometry parameters. The stochastic 3-D fracture network system constructed for the rock masses was validated and deemed to be successful. The 3-D fracture network model was suitable for developing conceptual ideas on fluid flow in fractures at a field experimental site. An injection well and three observation wells were drilled at the field experimental site to monitor the acidity of mine drainage induced by the injection of fresh water. The field experiment, which was run for 29 days, yielded a significant relationship (with a high coefficient of determination) between the fracture geometry parameters and the acidity of mine drainage. The results show that pH increased with increasing relative frequency of fracture strike, and decreased with increasing fracture density. The concentration of $SO^{2-}_4$ decreased with increasing relative frequency of fracture strike, and increased with increasing fracture density.

Behaviors of Pollutants and Microorganisms in an Anaerobic Digestion of Propionate Containing High Ammonia Nitrogen Level (고농도 암모니아성 질소를 함유한 프로피온산의 혐기성 분해시 오염물질 및 미생물 거동)

  • Lee, Chae-Young;Kim, Dae-Sung;Ahn, Won-Sik;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.126-137
    • /
    • 2006
  • Behaviors of simple organic compound and granular sludge in an upflow anaerobic sludge blanket (UASB) reactor treating propionate at high ammonia nitrogen levels were investigated for 12 months. The UASB reactor achieved about 80% removal of chemical oxygen demand (COD) at ammonia nitrogen concentration up to 6000 mg-N/L. At higher concentration of ammonia nitrogen, the propionate in the effluent increased whereas the acetate was very low. At ammonia nitrogen concentration of 8000 mg-N/L, the volatile suspended solids (VSS) increased sharply due probably to the decrease of the content of extracellular polymer (ECP) although methane production was very low. The specific methanogenic activity (SMA) using formate, acetate, and propionate as substrate to granules decreased as ammonia nitrogen concentration increased. The ammonia nitrogen concentration $I^{50}$, causing 50% inhibition of SMA were 2666, 4778 and 5572 mg-N/L, respectively. The kinetic coefficients of ammonia inhibition using formate, acetate, and propionate as substrate were 3.279, 0.999 and 0.609, respectively. The SMA using formate was severely affected by ammonia nitrogen than those using acetate and propionate. This result indicated that the hydrogenotrophic methanogens was most affected by ammonia nitrogen. Granules were mainly composed of microcolonies of methanothrix-like bacteria resembling bamboo-shape, and several other microcolonies including propionate degrader with juxtapositioned syntrophic associations between the hydrogen-producing acetogens and hydrogen-consuming methanogens.

  • PDF

Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 부탑재체 소형영상분광기 미광 해석)

  • Lee, Jin Ah;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.167-171
    • /
    • 2012
  • This paper reports on the stray light analysis results of a compact imaging spectrometer (COMIS) for a microsatellite STSAT-3. COMIS images Earth's surface and atmosphere with ground sampling distances of 27 m at the 18~62 spectral bands (0.4 ~ 1.05 ${\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. The telescope images a $27m{\times}28km$ area of Earth surface onto a slit of dimensions $11.8{\mu}m{\times}12.1mm$. This corresponds to a ground sampling distance of 27 m and a swath width of 28 km for nadir looking posture at an altitude of 700 km. Then the optics relays and disperses the slit image onto the detector thereby producing a monochrome image of the entrance slit formed on each row of detector elements. The spectrum of each point in the row is imaged along a detector column. The optical mounts and housing structures are designed in order to prevent stray light from arriving onto the image and so deteriorating the signal to noise ratio (SNR). The stray light analysis, performed by a non-sequential ray tracing software (LightTools) with three dimensional housing and lens modeling, confirms that the ghost and stray light arriving at the detector plane has the relative intensity of ${\sim}10^{-5}$ and furthermore it locates outside the concerned image size i.e. the field of view of the optics.

Development of Line Density Index for the Quantification of Oceanic Thermal Fronts (해양의 수온전선 정량화를 위한 선밀도 지수 개발)

  • Cho, Hyun-Woo;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.227-238
    • /
    • 2006
  • Line density index(LDI) was developed to quantify a densely isothermal line rate as standard index in the ocean environment. Theoretical background on the LDI development process restricting index range 0 to 100 was described. And validation test was done for the LDI application condition that total line length is not greater than 1/10 of unit area. NOAA SST(Sea Surface Temperature) data were used for the experimental application of LDI in the South Sea of Korea. Using GIS, $0.1^{\circ}C$ isothermal lines were linearized as vector data form SST raster data, and unit area were built as polygon data. For the LDI calculation, spatial overlapping(line in polygon) was implemented. To analyze the effect of unit area size for the LDI distribution, two cases of unit area size were designed and descriptive statistics was calculated including performing normality test. The results showed no change of LDI's essential characteristics such as mean and normality except for the range of value, variance and standard deviation. Accordingly, it was found that complex structure of thermal front and even smaller scale of front width than unit area size could influence on the LDI distribution. Also, correlation analysis performed between LDI and difference of temperature(${\Delta}T^{\circ}C$), and horizontal thermal gradient(${\Delta}T^{\circ}C/km$) on the front was obtained from linear regression model. This obtained value was compared with the results from previous researches. Newly developed LDI can be used to compare the thermal front regions changing spatio-temporally in the ocean environment using absolute index value. It is considered to be significant to analyze the relationship between thermal front and marine environment or front and marine organisms in a quantitative approach described in this study.

  • PDF

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.