• Title/Summary/Keyword: 이상탐지분석

Search Result 610, Processing Time 0.03 seconds

A Study on Anomaly Traffic Detection & Prevention Schemes in Wireless LAN (무선 랜 환경에서의 비정상 트래픽 차단기법에 관한 연구)

  • Seo Jong-Won;Choi Chang-Won;Lee Hyung-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.901-904
    • /
    • 2006
  • 인터넷 사용자들의 무선 네트워크의 활용빈도가 점차 높아지고 무선 네트워크의 보안시스템도 요구되면서 무선 네트워크의 안정적이고 원활한 활용과 사용자의 정보 노출의 위험을 줄이고자 유무선 통합형 IDS/IPS도 개발되고 있는 단계다. 본 논문에서는 무선랜 환경을 지원하는 유무선 IPS시스템을 구현하고, 비정상적인 트래픽 탐지의 효율성을 높여 IPS 시스템의 성능향상에 기여정도를 파악 및 분석하였다. 본 논문에서 구축한 IPS시스템은 하이브리드 형태로 구현하였으며 Snort-inline[11]과 Snort-wireless[12] 모듈을 사용하여 무선 랜 이상탐지 기능을 구현하였다. 네트워크 모니터링 시스템으로 네트워크의 트래픽 상황을 파악하여 비정상적인 트래픽이 증가되었을 경우, 제안한 IPS시스템에서 비정상 트래픽의 탐지 및 차단 기능을 기존 IPS와 성능을 비교/분석하였다.

  • PDF

Implementation and Analysis of Digital Signal Processing System for Intruder Detection using the Variations of the Optical Speckle Patterns (광 스페클 패턴 변화를 이용한 침입자 탐지용 디지털 신호처리 시스템 구현 및 성능 분석)

  • 김인수;강진석;김기만
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.360-367
    • /
    • 2004
  • In this paper, we have implemented the digital signal processing system for intruder detection using speckle pattern variation in multi-me optical fiber with hypersensitive and high fidelity. The performance of the implemented system was evaluated by experiments. In order to improve the system performances we applied the adaptive digital filter. In experimental results we could see 96 % intruder detection and 90 % man/car discrimination probability.

The Design of Monitoring Power System States for Invalid Network Access Detection (비정상 네트워크 접근 탐지를 위한 전력 시스템 상태 모니터링 설계)

  • Kim, Hyuk;Na, Jung-Chan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.884-887
    • /
    • 2012
  • 전력시스템은 외부 망과 독립적으로 운영되는 폐쇄 망에서 점차 외부 망과의 연계됨으로써 외부 요소에 의한 위협, 다차원적인 시스템 취약성에 노출되고 있다. 서비스 거부 공격은 전력시스템에 매우 치명적이기 때문에 가장 중요한 가용성을 확실히 보장하기 위한 시스템과 네트워크의 운영 및 관리를 통한 보안 대책이 필요하게 되었다. 기존의 네트워크 트래픽만으로 분석하여 이상징후를 탐지하는 방식에 한계가 있기 때문에 본 논문에서는 전력시스템의 네트워크 상태와 엔드 시스템 상태 특성을 실시간 모니터링하고 분석하여 비정상 네트워크 접근을 탐지할 수 있는 시스템을 설계하였다.

Realization of an outlier detection algorithm using R (R을 이용한 이상점 탐지 알고리즘의 구현)

  • Song, Gyu-Moon;Moon, Ji-Eun;Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.449-458
    • /
    • 2011
  • Illegal waste dumping is one of the major problems that the government agency monitoring water quality has to face. Recently government agency installed COD (chemical oxygen demand) auto-monitering machines in river. In this article we provide an outlier detection algorithm using R based on the time series intervention model that detects some outlier values among those COD time series values generated from an auto-monitering machine. Through this algorithm using R, we can achieve an automatic algorithm that does not need manual intervention in each step, and that can further be used in simulation study.

Manufacturing Data Preprocessing Method and Product Classification Method using FFT (FFT를 활용한 제조데이터 전처리 및 제품분류)

  • Kim, Han-sol;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.82-84
    • /
    • 2021
  • Through the smart factory construction project, sensor data such as power, vibration, pressure, and temperature are collected from production facilities, and services such as predictive maintenance, defect prediction, and abnormality detection are developed through data analysis. In general, in the case of manufacturing data, because the imbalance between normal and abnormal data is extreme, an anomaly detection service is preferred. In this paper, FFT method is used to extract feature data of manufacturing data as a pre-stage of the anomaly detection service development. Using this method, we classified the produced products and confirmed results. In other words, after FFT of the representative pattern for each product, we verified whether product classification was possible or not, by calculating correlation coefficient.

  • PDF

Leision Detection in Chest X-ray Images based on Coreset of Patch Feature (패치 특징 코어세트 기반의 흉부 X-Ray 영상에서의 병변 유무 감지)

  • Kim, Hyun-bin;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.35-45
    • /
    • 2022
  • Even in recent years, treatment of first-aid patients is still often delayed due to a shortage of medical resources in marginalized areas. Research on automating the analysis of medical data to solve the problems of inaccessibility for medical services and shortage of medical personnel is ongoing. Computer vision-based medical inspection automation requires a lot of cost in data collection and labeling for training purposes. These problems stand out in the works of classifying lesion that are rare, or pathological features and pathogenesis that are difficult to clearly define visually. Anomaly detection is attracting as a method that can significantly reduce the cost of data collection by adopting an unsupervised learning strategy. In this paper, we propose methods for detecting abnormal images on chest X-RAY images as follows based on existing anomaly detection techniques. (1) Normalize the brightness range of medical images resampled as optimal resolution. (2) Some feature vectors with high representative power are selected in set of patch features extracted as intermediate-level from lesion-free images. (3) Measure the difference from the feature vectors of lesion-free data selected based on the nearest neighbor search algorithm. The proposed system can simultaneously perform anomaly classification and localization for each image. In this paper, the anomaly detection performance of the proposed system for chest X-RAY images of PA projection is measured and presented by detailed conditions. We demonstrate effect of anomaly detection for medical images by showing 0.705 classification AUROC for random subset extracted from the PadChest dataset. The proposed system can be usefully used to improve the clinical diagnosis workflow of medical institutions, and can effectively support early diagnosis in medically poor area.

A Predictive Bearing Anomaly Detection Model Using the SWT-SVD Preprocessing Algorithm (SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델)

  • So-hyang Bak;Kwanghoon Pio Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.109-121
    • /
    • 2024
  • In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97. Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.

Instance-Based Learning for Intrusion Detection (네트워크 침입 탐지를 위한 사례 기반 학습 방법)

  • 박미영;이도헌;원용관
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.172-174
    • /
    • 2001
  • 침입 탐지란 컴퓨터와 네트워크 지원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 따라, 대용량의 데이터를 지능적으로 분석하여 의미있는 정보를 추출하는 데이터 마이닝 기법을 적용함으로써 지능적이고 자동화된 탐지를 수행할 수 있도록 한다. 본 논문에서는 학습 데이터를 각각 사례로 데이터베이스에 저장한 후, 실험 데이터가 입려되면 가장 가까운 거리에 있는 학습 데이터의 크래스로 분류하는 사례 기반 학습을 이용하여 빠르게 사용자의 이상 행위에 대해 판정한다. 그러나 많은 사례로 인해 기억 공간이 늘어날 경우 시스템의 성능이 저하되는 문제점을 고려하여, 빈발 에피소드 알고리즘을 수행하여 발견한 순차 패턴을 사례화하여 정상 행위 프로파이로 사용하는 순차패턴에 대한 사례 기반 학습을 제안한다. 이로써, 시스템 성능의 저하율을 낮추고 빠르며 정확하게 지능적인 침입 탐지를 수행할 수 있다.

  • PDF

Using Geometry based Anomaly Detection to check the Integrity of IFC classifications in BIM Models (기하정보 기반 이상탐지분석을 이용한 BIM 개별 부재 IFC 분류 무결성 검토에 관한 연구)

  • Koo, Bonsang;Shin, Byungjin
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.18-27
    • /
    • 2017
  • Although Industry Foundation Classes (IFC) provide standards for exchanging Building Information Modeling (BIM) data, authoring tools still require manual mapping between BIM entities and IFC classes. This leads to errors and omissions, which results in corrupted data exchanges that are unreliable and thus compromise the validity of IFC. This research explored precedent work by Krijnen and Tamke, who suggested ways to automate the mapping of IFC classes using a machine learning technique, namely anomaly detection. The technique incorporates geometric features of individual components to find outliers among entities in identical IFC classes. This research primarily focused on applying this approach on two architectural BIM models and determining its feasibility as well as limitations. Results indicated that the approach, while effective, misclassified outliers when an IFC class had several dissimilar entities. Another issue was the lack of entities for some specific IFC classes that prohibited the anomaly detection from comparing differences. Future research to improve these issues include the addition of geometric features, using novelty detection and the inclusion of a probabilistic graph model, to improve classification accuracy.

A study on diagnosis of failure of hydrogen refueling station diaphragm compressor using heterogeneous model ensemble (이종 모델간 앙상블을 이용한 수소충전소 다이어프램 압축기 고장 진단에 관한 연구)

  • Young-Woo Hong;Seong-Eun Kim;Duck-Shick Shin;Dong-Young Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.681-684
    • /
    • 2023
  • 우리나라의 수소연료전지 차량의 점유율이 매년 증가하고 있으나, 수소충전소 설비의 잦은 중단으로 수소연료전지 차량 운전자들이 제때 차량을 충전하지 못하는 불편이 발생하고 있다. 본 논문에서는 수소충전소 설비 중 Diaphragm을 사용하는 압축기의 이상 패턴을 탐지하는 Ensemble 모델을 통해 수소충전소에서 2023년 1월 1일부터 2023년 6월 28일 동안 수집된 데이터를 분석하였으며, 해당 기간 동안 발생했던 고장에 대해 2일전부터 이상 패턴이 10,000 이상 탐지되는 결과를 얻었다.