• Title/Summary/Keyword: 이상원인 탐지

Search Result 72, Processing Time 0.022 seconds

Detection of Traffic Anomalities using Mining : An Empirical Approach (마이닝을 이용한 이상트래픽 탐지: 사례 분석을 통한 접근)

  • Kim Jung-Hyun;Ahn Soo-Han;Won You-Jip;Lee Jong-Moon;Lee Eun-Young
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.3
    • /
    • pp.201-217
    • /
    • 2006
  • In this paper, we collected the physical traces from high speed Internet backbone traffic and analyze the various characteristics of the underlying packet traces. Particularly, our work is focused on analyzing the characteristics of an anomalous traffic. It is found that in our data, the anomalous traffic is caused by UDP session traffic and we determined that it was one of the Denial of Service attacks. In this work, we adopted the unsupervised machine learning algorithm to classify the network flows. We apply the k-means clustering algorithm to train the learner. Via the Cramer-Yon-Misses test, we confirmed that the proposed classification method which is able to detect anomalous traffic within 1 second can accurately predict the class of a flow and can be effectively used in determining the anomalous flows.

A Design and Implementation of the system for detecting infected host using resource monitoring in local area (네트워크 자원 모니터링을 통한 내부 감염호스트 탐지 시스템의 설계 및 구현)

  • 유기성;이행곤;김주석;이원혁
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.12a
    • /
    • pp.137-140
    • /
    • 2003
  • 최근 웜이나 바이러스, DDoS(Distributed Denial of Service)와 같은 네트워크 침해사고가 빈번히 발생되고 있어 이를 해결하기 위한 여러 가지 방안이 연구 중이다. 하지만 대개의 경우 외부의 침입탐지에 대한 대책만이 이루어지고 있어, 실제로 내부 호스트에서 감염되어 발생시키는 트래픽에 대해서는 원인 진단이 어려운 실정이다. 따라서 네트워크 장애의 원인이 되는 단말 호스트를 찾아내어 장애처리를 하는 것이 정상적인 네트워크 환경구축을 위하여 필요하다. 본 논문에서는 네트워크 자원 모니터링과 트래픽 분석을 통하여 이상 트래픽에 대한 징후를 사전에 탐지하고, 최종 단말 호스트의 위치까지 추적 가능한 시스템을 설계 및 구현하고자 한다.

  • PDF

An Integrated Process Control Scheme Based on the Future Loss (미래손실에 기초한 통합공정관리계획)

  • Park, Chang-Soon;Lee, Jae-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.247-264
    • /
    • 2008
  • This paper considers the integrated process control procedure for detecting special causes in an ARIMA(0,1,1) process that is being adjusted automatically after each observation using a minimum mean squared error adjustment policy. It is assumed that a special cause can change the process mean and the process variance. We derive expressions for the process deviation from target for a variety of different process parameter changes, and introduce a control chart, based on the generalized likelihood ratio, for detecting special causes. We also propose the integrated process control scheme bases on the future loss. The future loss denotes the cost that will be incurred in a process remaining interval from a true out-of-control signal.

Notes on identifying source of out-of-control signals in phase II multivariate process monitoring (다변량 공정 모니터링에서 이상신호 발생시 원인 식별에 관한 연구)

  • Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Multivariate process control has become important in various applied fields. For instance, there are many situations in which the simultaneous monitoring of multivariate quality characteristics is necessary for the manufacturing industry. Despite its importance, its practical usage is not as convenient because it is difficult to identify the source of the out-of-control signal in a multivariate control chart. In this paper, we will introduce how to detect the source of the out-of-control by using confidence intervals for new observations, and will discuss the identification and interpretation of the out-of-control variable through simulation studies.

Identification of the out-of-control variable based on Hotelling's T2 statistic (호텔링 T2의 이상신호 원인 식별)

  • Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.811-823
    • /
    • 2018
  • Multivariate control chart based on Hotelling's $T^2$ statistic is a powerful tool in statistical process control for identifying an out-of-control process. It is used to monitor multiple process characteristics simultaneously. Detection of the out-of-control signal with the $T^2$ chart indicates mean vector shifts. However, these multivariate signals make it difficult to interpret the cause of the out-of-control signal. In this paper, we review methods of signal interpretation based on the Mason, Young, and Tracy (MYT) decomposition of the $T^2$ statistic. We also provide an example on how to implement it using R software and demonstrate simulation studies for comparing the performance of these methods.

Development of a Deep Learning Algorithm for Anomaly Detection of Manufacturing Facility (설비 이상탐지를 위한 딥러닝 알고리즘 개발)

  • Kim, Min-Hee;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • A malfunction or breakdown of a manufacturing facility leads to product defects and the suspension of production lines, resulting in huge financial losses for manufacturers. Due to the spread of smart factory services, a large amount of data is being collected in factories, and AI-based research is being conducted to predict and diagnose manufacturing facility breakdowns or manufacturing site efficiency. However, because of the characteristics of manufacturing data, such as a severe class imbalance about abnormalities and ambiguous label information that distinguishes abnormalities, developing classification or anomaly detection models is highly difficult. In this paper, we present an deep learning algorithm for anomaly detection of a manufacturing facility using reconstruction loss of CNN-based model and ananlyze its performance. The algorithm detects anomalies by relying solely on normal data from the facility's manufacturing data in the exclusion of abnormal data.

A Framework for Early Detection and Interpretation of Concept Drift (컨셉 드리프트를 고려한 조기탐지 및 해석 프레임워크)

  • Min-Jung Kang;Su-Bin Oh;Sang-Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.701-704
    • /
    • 2023
  • 본 연구는 반도체 제조 과정에서 생산 가용 능력이 저하되는 시점을 조기 탐지하기 위한 프레임워크를 제안한다. 이를 위해 데이터 패턴의 불규칙한 변동이 잦은 환경에서 모델의 재학습 없이 최적의 성능을 유지할 수 있도록 온라인 학습 방식을 활용하였다. Augmented Dicky-Fuller test 를 통해 데이터의 정상성 여부를 검정하고, 데이터에 변화가 있을 경우 학습 모델은 지속적으로 업데이트된다. 특히, 상한 재공재고는 생산량과 직결되는 주요 지표로써, 낮게 예측된 시점에서 주요 원인 변수를 파악하는 것이 중요하다. 따라서 정확도와 효율성 측면에서 다른 모델 대비 가장 우수한 성능을 보였던 제안 기법에 shapley additive explanations(SHAP)을 적용하여 생산 저하 시 문제가 되는 원인 변수를 분석하고자 하였다.

Design of Variable Life-Adjusted Display (VLAD) Charts (VLAD 관리도의 설계)

  • Lee, Jae-Heon;Jung, Sang-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.597-604
    • /
    • 2007
  • There are many uses of control charts in health-care monitoring and in public-health surveillance. For example, control charts are used in monitoring and improvement of hospital performance, in monitoring chronic diseases and infectious diseases, and so on. We introduce the Variable Life-Adjusted Display (VLAD) chart and propose the method for choosing control limits of the VLAD chart to give specified in-control properties.

Embedded Image Processing of Surveillance Robot (감시용 로봇에서의 임베디드 영상처리 구현)

  • Shin, Seonwoong;Oh, Seyeop;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1429-1430
    • /
    • 2013
  • 본 논문은 진공흡착방식을 이용한 벽오르는 로봇에 탑재하기 위한 임베디드 시스템의 설계와 영상처리 알고리즘의 구현에 관한 연구이다. 벽면에서의 위험 요인 발견과 지능적인 처리를 위해 영상처리가 가능하고 원격의 스마트 단말기와 실시간 통신이 가능한 환경을 구축하였으며 이상 물질을 탐지하기 위해 색상성분을 정규화하고 특정객체를 탐지 후 영상을 전송하는 방법을 구현하였다. 이러한 기능은 무인로봇을 이용해 위험한 벽 환경에서의 균열이나 이상원인을 지능적으로 탐색하는 응용이 가능하다.