• Title/Summary/Keyword: 이상수

Search Result 51,965, Processing Time 0.089 seconds

Chemical Constituents in Polygonum multiflorum Thunberg Root Based on Various Dry Methods (건조방법에 따른 적하수오(Polygonum multiflorum Thunberg)의 이화학적 성분)

  • Oh, Junseok;Hong, Jae-Heoi;Park, Tae-Young;Yun, Kyeong-Won;Kang, Kyeong-Yun;Jin, Seong-Woo;Kim, Kyung-Je;Ban, Seung-Eon;Im, Seung-bin;Koh, Young-Woo;Seo, Kyoung-Sun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.283-293
    • /
    • 2018
  • This study was performed to analysis of chemical constituent in Polygonum multiflorum root (PMR) by different dry methods (hot-air dry, shade dry, and freeze dry). The results are summarized as followings; major free sugar were detected fructose, glucose, and sucrose in dried PMR based on various dry methods. The highest content of free sugars was found in freeze dried PMR. The four organic acids were detected in dried PMR by HPLC analysis. The content of oxalic acid in shade dried PMR was higher than the dried PMR by different dry methods. The content of total amino acid and essential amino acids were high in the orders of freeze drying > shade drying > hot-air drying. The potassium and magnesium levels of freeze dried PMR was significantly higher than the other drying method of PMR. Whereas the calcium and sodium levels were higher in hot-air dried PMR. The major fatty acids were determined the linoleic acid in PMR by different dry methods.

Studies on Physiological Nitrogen Fixation -II. Effects of soil physical properties-soil texture, soil type, drainage and agricultural locality-on the changes of photo synthetic and aerobic heterotrophic nitrogen fixing activity (생리학적(生理學的) 질소고정(窒素固定)에 관(關)한 연구(硏究) -제(第) II 보(報). 답토양(畓土壤)의 물리적특성(物理的特性)-답류형(畓類型), 토성(土性), 배수정도(排水程度), 농업기후대(農業氣候帶)-이 광합성(光合成) 및 타양성질소고정력(他養性窒素固定力)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Lee, Myeong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 1987
  • A green house experiment was conducted to find out the acetylene reducing and $N_2$-fixing activity from photosynthetic and aerobic heterotrophic nitrogen fixing microorganisms in submerged paddy soil under different agricultural locality, soil series, soil texture, soil type, and drainage condition in which samples taken from without nitrogen treatment plot of NPK trials on 16 sites of the farmer's field. The results obtained were summarized as follows: 1. The highest acetylene reducing activity was observed at 7 days after incubation in the light condition (photo synthetic microbes+heterotrophic bacteria) while it was observed at 35 days incubation in the dark condition (heterotrophic bacteria). 2. Among the soil series, photosynthetic nitrogen fixing activity was pronounced more in Jangae, Ogcheon and Hwadong series while lower was obtained in Buyong and Daejeong series. Aerobic heterotrophic nitrogen fixing activity was high in Buyong and Daejong series. 3. Estimated amount of $N_2$-fixation from acetylene reducing activity was equivalented to 3.0 mg in light condition and 4.9 mg/100g/105 days in dark condition. 4. Among the agricultural locality, photosynthetic nitrogen fixing activity was high in rather warm southern part while heterotrophic nitrogen fixing activity was predominated more in mountainous area and Chungcheong continental. 5. Photosynthetic nitrogen fixing activity was predominated in high productive soil while aerobic heterotrophic nitrogen fixing activity was pronounced more in crose coarse sandy soil. 6. The soils properties of high photosynthetic nitrogen fixing activity were constituted of poorly or imperfectly drained clay or clay loam soil while heterotrophic nitrogen fixing activity was pronounced more in well to moderately well drained sandy or sandy loam soil.

  • PDF

Fertility Status in Northeastern Alpine Soils of South Korea with Cultivation of Vegetable Crops (강원도 고랭지 채소 재배지의 토양 비옥도관리 현황과 전망)

  • Yang, Jae-E.;Cho, Byong-Ok;Shin, Young-Oh;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Total upland area for cultivating the vegetable crops in the Alpine soils of Northeastern South Korea has been extending its limit to meet the increasing demand of vegetable food in recent decades. About 70% of these alpine soils are located in over 7% of the slope and most of vegetable crops have been cultivated intensively without practicing the best management systems. Thus, soil erosion and continuous cropping system have degenerated the soil fertility and shown detrimental effects on water quality. We initiated an intensive and extensive investigation to characterize the fertility problems encountered in these uplands. Objectives of this paper were to characterize the fertility status in the Alpine soils cultivated with vegetable crops for many years and to provide the recommendations for adequate soil management measures including fertilization and erosion control. Soils in general have good drainage with textural classes of loam or sandy loam. Their topographical characteristics tended to lead them to shallow plow layers, and the steepness of the terrain created erosion hazard. Of the soils examined, about 11% of uplands over 30% gradient was found in need of an urgent reforestation. A high content of gravel and firm hardness of soil attributed to inhibit the utilization of farm machinery and plant-root development. The average soil pH 5.6 was slightly low relative to pH 5.70 of the national average. Organic matter content was high compared with 2.0% of national average, but decreased with the prolonged cultivation periods. Available $P_2O_5$ concentration was unusually high due to the consequence of over dose application with chemical and organic fertilizers. Exchangeable cations as Ca, Mg, and K were appeared to be decreased in these regions with prolonging the cultivation periods. There were no significant differences in cation exchange capacity (CEC) and electrical conductivity (EC) among locations. Heavy metal contents were mostly lower than the threshold of danger level designated by Soil Environment Conservation Law of South Korea. Results indicated that a proper countermeasure and the best management practice should be immediately implemented to conserve the top soil and fertility in the Alpine regions.

  • PDF

Assessment of National Soil Loss and Potential Erosion Area using the Digital Detailed Soil Maps (수치 정밀토양도를 이용한 전국 토양 유실량의 평가 및 침식 위험지역의 분석)

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Hong, Seok-Young;Hur, Seung-Oh;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • This study was performed to estimate the soil loss on a national scale and grade regions with the potential risk of soil erosion. Universal soil loss equation (USLE) for rainfall and runoff erosivity factors (R), cover management factors (C) and support practice factors (P) and revised USLE for soil erodibility factors (K) and topographic factors (LS) were used. To estimate the soil loss, the whole nation was divided into 21,337 groups according to city county, soil phase and land use type. The R factors were high in the southern coast of Gyeongnam and Jeonnam and part of the western coast of Gyeonggi and low in the inland and eastern coast of Gyeongbuk. The K factors were higher in the regions located on the lower streams of rivers and the plain lands of the western coast of Chungnam and Jeonbuk. The average slope of upland areas in Pyeongchang-gun was the steepest of 30.1%. The foot-slope areas from the Taebaek Mountains to the Sobaek Mountains had steep uplands. Total soil loss of Korea was estimated as $50{\times}10^6Mg$ in 2004. The potential risk of soil erosion in upland was the severest in Gyeongnam and the amount of soil erosion was the greatest in Jeonnam. The regions in which annual soil loss was estimated over $50Mg\;ha^{-1}$ were graded as "the very severe" and their acreage was $168{\times}10^3ha$ in 2004. The soil erosion maps of city/county of Korea were made based on digital soil maps with 1:25,000 scale.

Optimum Pre-treatment Method in Constructed Wetlands by Natural Purification Method for Treating Livestock Wastewater (자연정화공법에 의한 인공습지에서 효과적인 축산폐수처리를 위한 최적 전처리방법 구명)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Seong-Tea;Jeong, Tae-Uk;Choi, Jeong-Ho;Lee, Sang-Won;Cho, Ju-Sik;Kim, Hyun-Ook;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.425-433
    • /
    • 2011
  • In order to obtain optimum pre-treatment methods and improve T-N and T-P removal efficiencies, removal rates of pollutants in small-scale livestock wastewater treatment apparatus with water plant filtration bed or activated sludge tank were investigated. Based on the results from the optimum pre-treatment in small-scale livestock wastewater treatment apparatus, removal efficiencies of pollutants in livestock wastewater treatment plant with water plant filtration and activated sludge beds. The removal rates of COD, SS, T-N, and T-P in effluent were 83, 89, 63 and 87% in small-scale livestock wastewater treatment apparatus with water plant filtration bed, respectively. The removal rates of COD, SS, T-N, and T-P in effluent were 96, 95, 86 and 92% in small-scale livestock wastewater treatment apparatus with activated sludge tank, respectively. For increasing the COD, SS, T-N, and T-P removals in small-scale livestock wastewater treatment apparatus, the water plant filtration and activated sludge beds are recommended. In livestock wastewater treatment plant with water plant filtration ($1^{st}$ treatment) and activated sludge ($2^{nd}$ treatment) beds, the concentrations of COD, SS, T-N, and T-P in effluent were 39, 15, 42 and $1mg\;L^{-1}$, respectively. It was shown that the concentrations of COD, SS, T-N, and T-P met acceptable effluent quality standard for livestock wastewater. Based on the above results, the removal rates of COD, SS, T-N, and T-P in effluent were over 99.8, 99.9, 99.2, and 99.9% in livestock wastewater treatment plant, respectively.

Effects of Application Method of Pig Compost and Liquid Pig Manure on Yield of Whole Crop Barley (Hordeum vulgare L.) and Chemical Properties of Soil in Gyehwa Reclaimed Land (계화간척지에서 돈분뇨 퇴.액비 시용이 청보리 (Hordeum vulgare L.) 수량 및 토양화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Lee, Jung-Jun;Oh, Young-Jin;Park, Tail-Il;Kim, Kee-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.353-360
    • /
    • 2011
  • In order to develop the application method of pig compost (PC) and liquid manure (LM) for whole crop barley cultivation, experiments were conducted at Munpo series (coarse loamy, mixed, nonacid, mesic family of Typic Fluvaquents) soil in Gyehwa-reclaimed land, six plots, a LM applied rate as N% ; non-application, chemical fertilizer (CF)100, 100, 50+50, 50+CF50 and (PC30+LM40)+LM50 as basal and additional fertilizer. $NO_3^-$-N content in soil was decreased as along with the growth of plant, highest in LM100% as basal fertilization at early growth stage and highest in (PC30%+LM40%)+LM40% and CF100% at last growth stage. Amount of $NO_3^-$-N and $NH_4^+$-N in soil was high in (PC30%+LM40%)+LM40% and CF100% of top soil but in subsoil significant difference was little in all treatment. Amount of OM, $A_V.P_2O_5$, T-N, exchangeable Ca and Na in soil was higher (PC30%+LM40%)+LM40% than non-application after harvest. Amount of nutrient uptake in plant was higher in CF100% and split application of LM than LM 100% application. Nitrogen utilization rate was in the order of CF100% >LM50%+LM50%=LM50%+CF50%>(PC30%+LM40%)+LM40% >LM100%. The yield of whole crop barley in (PC30%+LM40%)+LM40% and CF100% was 3.2 times more than in non-application ($309kg\;10a^{-1}$). Feed values such as crude protein and TDN was increased 1.0% ~ 1.4% in LM as split application than basal 100% treatment. Accordingly, in order to increase yield of a whole crop barley with application PC+LM in reclaimed land treat split application rather than to treat LM 100% into the land.

Growth Characteristics and Nutrient Loads of Submerged Plants in Flood Control Reservoir around Juam Lake (주암호 홍수조절지내 침수식물체별 생육특성과 영양염류 부하량)

  • Seo, Young-Jin;Seo, Dong-Cheol;Choi, Ik-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kang, Seok-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.922-928
    • /
    • 2011
  • In order to properly manage the quality of water in Juam Lake, distributions and growth characteristics of submerged plants in Boknae flood control reservoir were investigated. In addition, the total amount of nutrient load by submerged plants were investigated. The total vegetation area was $1,146,849m^2$ of total flood control reservoirs ($1,848,568m^2$) before flooding. By August 19, all of Boknae flood control reservoir was flooded during rainy season. Dominant plants were MISSA (Miscanthus sacchariflorus), SCPMA (Scirpus fluviatilis) and CRXDM (Carex dimorpholepis) which occupied 87% of all flood control reservoirs. The total amounts of organic matter loads at different submerged plants were great in the order of CRXDM ($501,642kg\;area^{-1}$) > SCPMA ($20,987kg\;area^{-1}$) > MISSA ($3,413kg\;area^{-1}$). The total amounts of nitrogen loads by CRXDM, SCPMA and MISSA under different submerged plants were 56%, 3.9% and 0.8%, respectively. The total amounts of phosphorus loads at different submerged plants were on the order of CRXDM ($1,842kg\;area^{-1}$) > SCPMA ($78kg\;area^{-1}$) > MISSA ($14.8kg\;area^{-1}$). Therefore, the results of this study suggest that organic matter, T-N and T-P in water quality of Juam lake were strongly influenced by submerged plants in flood control reservoir.

Soil Chemical Property, Mortality Rates and Growth of Planting Trees from Soil Covering Depths in Coastal Reclaimed Land of Asan Area (아산지역 해안매립지의 복토높이에 따른 토양화학성, 수목 고사율 및 생장 특성)

  • Byun, Jae-Kyeong;Kim, Choon-Sig;Lim, Chae-Cheol;Jeong, Jin-Hyon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.502-509
    • /
    • 2011
  • It is important to determine optimum soil covering depths for tree survival and growth because soil covering depths for establishing tree planting bases in coastal reclaimed lands are related to the costs for soil collection, transportation and land reclamation. The objectives of this study were carried out to determine optimum soil covering depths for the normal growth of planted trees in a coastal reclaimed land. The study sites were located in Asan National Industrial Complex in Pyeongtaek City, Gyeonggi-do. Four tree species (Pinus thunbergii, Chamaecyparis pisifera, Zelkova serrata, Quercus acutissima) with one hundred eighty trees of each species were planted in various depths of soil covering (no soil covering, 0.5 m, 1.5 m, 2.0 m soil covering treatments) on April 1998, and the tree growth patterns were measured on September 2000. The change of soil properties, tree mortality rate, root collar diameter and height growth were measured from each soil covering depth treatment on September 2000. Soil pH, EC, exchangeable cations ($K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$), anion $Cl^-$, and base saturation increased with decreased soil covering depths. The mortality rates of tree species showed decreased with increased soil covering depths. The height growth of tree species increased with increased soil covering depths. Height growth of Pinus thunbergii was significantly different between the soil covering depth below 0.5m and other three covering depths, while the growth of other species (C. pisifera, Z. serrata, Q. acutissima) was significantly higher in soil covering depths below 1.5 m than in other soil covering depth treatments. The root collar diameter growth of all tree species showed increasing trends with increased soil covering depths. It is recommended to cover the soil depths above 1.5 m to decrease mortality and to stimulate the tree growth of C. pisifera, Z. serrata and Q. acutissima, while P. thunbergii which is a salt tolerate species could be planted in the 1.0 m soil covering depth.

Effect of Mixed Cultivation with Green Manure Crops and Liquid Pig Manure on Rice Growth (녹비작물과 돈분액비의 혼용재배가 벼 생육에 미치는 효과)

  • Kang, Se-Won;Seo, Dong-Cheol;Han, Jong-Hak;Seo, Young-Jin;Lee, Sang-Gyu;Choi, Ik-Won;Jeon, Weon-Tai;Kang, Ui-Gum;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1095-1102
    • /
    • 2011
  • The effect of mixed cultivation with green manure crops and liquid pig manure on rice growth was investigated. Field experiment in site 1 (Astragalus sinicus L.) and site 2 (Lolium multiflorum Lam.) were designed with control (non-green manure crop), PLM 100 (non-green manure crop + liquid pig manure 100%), A(L)PLM 0 (green manure crop + PLM 0%), A(L)PLM 50 (green manure crop + PLM 50%), A(L)PLM 75 (green manure crop + PLM 75%), and A(L)PLM 100 (green manure crop + PLM 100%). The results of 1,000 grain in rice plant were in the order of APLM 100 ${\geqq}$ APLM 75 ${\fallingdotseq}$ PLM 100 ${\fallingdotseq}$ APLM 0 ${\fallingdotseq}$ APLM 50 ${\fallingdotseq}$ control for site 1 and LPLM 100 ${\geqq}$ LPLM 75 = LPLM 50 = PLM 100 ${\geqq}$ LPLM 0 ${\fallingdotseq}$ control for site 2. The yields of rice in site 1 and site 2 were $636kg\;10a^{-1}$ (increasing yield 10%) for APLM 100 and $775kg\;10a^{-1}$ (increasing yield 12%) for LPLM 100, respectively.

Evaluation of Aquatic Ecological Characteristics in Sinpyongcheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 신평천 인공습지의 수생태학적 특성 평가)

  • Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Chang, Nam-Ik;Seong, Hwan-Hoo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.400-407
    • /
    • 2011
  • To evaluate the aquatic ecological characteristics in Sinpyongcheon constructed wetlands for treating nonpoint source pollution, the removal rates of nutrients in water, the total amounts of T-N and T-P uptakes by water plants, and chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD, COD, SS, T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were 14%, 6%, 18%, 24%, and 10%, respectively. The maximum amount of T-N uptake by water plants in August was $813mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $1,172mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. The maximum amount of T-P uptake by water plants in August was $247mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $359mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. Organic matter, T-N, and T-P contents in sediments were high in the order of $1^{st}$ bed > $2^{nd}$ bed > $3^{rd}$ bed. Microbial biomass C/N/P ratios in sediments in $1^{st}$, $2^{nd}$, and $3^{rd}$ were 78~110/3~6/1, 73~204/1~6/1, and 106~169/1~6/1, respectively.