최근 컴퓨팅 기술의 발전과 클라우드 환경의 개선에 따라 딥 러닝 기술이 발전하게 되었으며, 다양한 분야에 딥 러닝을 적용하려는 시도가 많아지고 있다. 대표적인 예로 정상적인 데이터에서 벗어나는 값이나 패턴을 식별하는 기법인 이상 탐지가 있으며, 이상 탐지의 대표적 유형인 점 이상, 집단적 이상, 맥락적 이중 특히 전반적인 상황을 파악해야 하는 맥락적 이상을 탐지하는 것은 매우 어려운 것으로 알려져 있다. 일반적으로 이미지 데이터의 이상 상황 탐지는 대용량 데이터로 학습된 사전학습 모델을 사용하여 이루어진다. 하지만 이러한 사전학습 모델은 이미지의 객체 클래스 분류에 초점을 두어 생성되었기 때문에, 다양한 객체들이 만들어내는 복잡한 상황을 탐지해야 하는 이상 상황 탐지에 그대로 적용되기에는 한계가 있다. 이에 본 연구에서는 객체 클래스 분류를 학습한 사전학습 모델을 기반으로 이미지 캡셔닝 학습을 추가적으로 수행하여, 객체 파악뿐만 아니라 객체들이 만들어내는 상황까지 이해해야 하는 이상 상황 탐지에 적절한 2 단계 사전학습 모델 구축 방법론을 제안한다. 구체적으로 제안 방법론은 ImageNet 데이터로 클래스 분류를 학습한 사전학습 모델을 이미지 캡셔닝 모델에 전이하고, 이미지가 나타내는 상황을 설명한 캡션을 입력 데이터로 사용하여 학습을 진행한다. 이후 이미지와 캡션을 통해 상황 특질을 학습한 가중치를 추출하고 이에 대한 미세 조정을 수행하여 이상 상황 탐지 모델을 생성한다. 제안 방법론의 성능을 평가하기 위해 직접 구축한 데이터 셋인 상황 이미지 400장에 대해 이상 탐지 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 단순 사전학습 모델에 비해 이상 상황 탐지 정확도와 F1-score 측면에서 우수한 성능을 나타냄을 확인하였다.
유비쿼터스 컴퓨팅 기술이 빠른 속도로 발전함에 따라 의료 분야에서는 상황인지기술을 이용하여 환자의 안전 향상을 도모하고 있다. 그럼에도 불구하고 의료 기관의 환자 이상상황은 그 발생 빈도가 상당히 높다. 상황인지정보의 효과적인 관리와 이상상황에 대한 대응프로세스의 체계적인 관리의 부재로 인해 환자의 안전 제고에 대한 요구가 큰 실정이다. 본 연구에서는 이러한 문제를 해결하기 위한 시스템을 제안하고자 한다. 제안된 시스템은 세 개의 기능을 수행한다. 첫째, 상황인지 기술을 통하여 의료 기관 내에서 발생하는 모든 상황을 실시간으로 인지할 수 있도록 한다. 둘째, 인지된 상황인지 데이터의 패턴을 정의하고 규칙 기반 시스템으로 설계함으로써, 유의미한 데이터를 추출한다. 셋째, 비즈니스 프로세스 관리 시스템을 연동함으로써 환자의 이상상황을 프로세스 중심적으로 관리하도록 한다. 제안된 시스템은 u-Hospital에서 효율적으로 환자의 안전을 향상시킬 수 있을 것으로 기대된다.
드론은 이미 우리의 실생활에 폭 넓은 응용분야로 자리 매김하고 있으며, 또한 다양한 분야에서 중요한 역할을 수행하고 있다. 본 연구는 이러한 응용 분야 중에서 산업재해 대응을 위한 드론 운용 시스템 설계에 관한 방법론으로서, 드론이 정상 비행경로에 따라 비행하면서 재해관리현장에서 촬영된 영상을 드론 관리 서버로 전송하고, 이를 분석하여 각 재해관리현장이 이상상황 또는 비상상황인지를 판단한다. 이상상황으로 판단되면, 드론이 근접지점이 포함된 지정된 이상비행경로로 비행경로를 변경하여 영상을 촬영하고 함께 측정된 센서 값을 드론 관리 서버로 전송하고, 이들을 분석하여 정상상황 또는 비상상황인지를 판단한다. 비상상황으로 판단되면, 드론을 최대 근접지점으로 비행시켜 다시 관련 정보를 드론 관리 서버 및 상황실 서버로 전송하는 시스템을 설계하는 방법론을 제안한다.
센서 및 정보 통신 기술의 발전은 산업 현장에서 취득한 정보를 기반으로 다양한 연구를 수행할 수 있는 토대가 되었다. 본 연구에서는 철도의 진로 방향을 전환하는 선로 전환기 주변에 설치한 소리 센서에서 수집한 소리를 기반으로 선로 전환기의 이상 상황을 탐지하고자 한다. 이와 같은 소리 데이터 기반의 이상 상황 탐지 시스템을 실제 산업 현장에서 성공적으로 운용되기 위해서는 소리 취득 시 발생하는 다양한 잡음 환경에서도 이상 상황을 식별할 수 있는 강인함이 보장되어야 한다. 본 논문에서는 소리 음질을 향상시키기 위하여 SEGAN(Speech Enhancement Generative Adversarial Network)을 활용하며, CNN(Convolutional Neural Network)을 기반으로 선로 전환기의 이상 상황을 식별하는 시스템을 제안한다. 수집된 소리 데이터를 기반으로 제안한 시스템을 실험적으로 검증한 바 잡음에 강인한 성능을 확인하였다.
본 논문은 안전관리 지역 내에서 아이와 같은 객체의 움직임에 대한 분석 연구이다. 안전관리 지역 내의 객체의 이상상황을 감지하여, 만일 비정상적인 상황이 감지되면 사전에 정해진 업무를 수행하도록 설계되어진다. 인적자원을 통하여 안전관리가 필요한 지역에 대해서 지속적으로 이상상황에 대한 감지업무를 수행한다는 것은 불가능한 사항이므로 이러한 감지 시스템의 도입을 통하여 안정적으로 지역의 신뢰도를 높일 수 있다. 따라서 본 논문에서는 객체의 검지를 통하여 현재의 상황을 인식하여 그에 대한 대응을 위한 것이다. 본 논문에서 제안한 방안을 통하여 센서 기반 분석시스템을 이용하여 객체의 이동상황 및 이상상황 감지를 수행한다.
열차의 진로를 변경시키는 선로전환기의 고장은 탈선 등과 같은 대형 사고를 유발시킬 수 있는 중요한 시설이다. 따라서 열차운행 안전 측면에서 해당 설비에 대한 모니터링은 필수적이다. 본 논문에서는 선로전환기의 구동 시 발생하는 소리 정보를 이용하여 선로전환기의 이상상황을 탐지하는 시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호를 Power Spectral Density(PSD) 특징으로 변환한다. 추출된 PSD 특징은 이미 성능이 입증된 딥러닝의 대표적인 모델인 Convolutional Neural Network(CNN)에 적용하여 이상상황을 탐지한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 취득하여 모의실험을 수행한 결과, 비정상 상황을 안정적으로 탐지함을 확인하였다.
최근 카메라 센서 및 알고리즘의 발달로 엔터테인먼트 목적의 영상 시스템을 비롯한 공정 기술, 교육 및 의료 등 다양한 목적의 영상 시스템이 개발 되고 있다. 또한 범죄 예방, 사고 상황 인식을 위한 감시 영상 시스템의 연구도 활발히 진행되고 있다. 본 논문에서는 이상 상황 인식을 위한 지능형 교통 시스템에 대해 제안하고자 한다. 제안하는 시스템은 크게 학습 과정과 이상 상황 인식 과정으로 나누어진다. 학습 과정에서는 CCTV와 같은 정적인 카메라에서 촬영된 도로 교통 영상에서 이동 객체의 특징을 추출하고 이를 추적하여 특징 벡터를 구성한다. 구성된 특징 벡터들은 클러스터링 기법을 통해 장면을 모델링하는데 이용되며 최종적으로 이 모델을 이용해 실시간으로 도로 교통 영상에서 이상 상황을 인식할 수 있게 된다. 실험을 통한 성능 평가를 통해 시스템의 우수함을 확인 하였다.
선로전환기는 분기기에서 철도의 궤도를 변경하는 핵심장치 중 하나로서, 해당 부품의 고장은 열차사고에 직접적인 영향을 미친다. 현재 철도 현장에서는 관리자가 모니터링 시스템을 통해 선로전환기의 장애 및 이상상황을 감시하고 지침서에 따라 관리를 수행한다. 본 논문에서는 실제 현장에서 발생하는 대규모의 선로전환기 이상상황 데이터를 대상으로 빅 데이터 해석학적 입장에서 심층 분석이 가능한 새로운 철도 유지보수 분석 시스템의 프로토타입을 제안한다. 제안하는 시스템은 첫째, 유지관리시스템에 저장된 선로전환기 데이터와 이상상황 데이터를 정규화하고 추출하여 베이스 테이블을 생성한다. 둘째, 베이스 테이블 상의 속성들을 스타 스키마로 설계하여 철도 유지보수 큐브로 구축한다. 마지막으로, 매핑된 철도 유지보수 큐브와 오라클에서 제공하는 AWM을 활용해 다차원적이고 심층적인 OLAP(On-Line Analytical Processing) 분석이 가능하다.
본 논문은 이상 상황을 탐지하고 모니터링하는 다양한 서비스가 존재한다. 하지만 대부분의 서비스는 화재, 가스누출에 초점을 맞추어 진행되고 있으며, 독거노인과 중증장애인들의 사망 혹은 심정지 등 위급상황에 대하여 사전 예방 및 위급상황 대응이 불가능하다. 본 연구에서는 여러 생체신호 중 가장 위중하다고 판단되는 심박 신호의 이상 상태를 탐지하기 위하여 인공지능 모델을 설계하는 과정에서 적합한 데이터 변형과 모델을 비교한다. 세부적으로는 오픈 의료 데이터 PhysioNet의 MIT-BIH Arrhythmia Database를 이용하여 심전도(ECG) 데이터를 수집하고, 수집한 데이터를 각각 다른 방법으로 데이터를 변형한 후 학습하여 기본 심전도 데이터를 이용해 학습한 인공지능 모델과 비교한다.
양돈을 관리하는 데에 있어 비정상 개체를 식별하고 사전에 추적하거나 격리할 수 있는 양돈업 시스템을 구축하는 것은 효율적인 돈사관리를 위한 필수 요소이다. 그러나 돈사내의 이상 상황을 탐지하는 연구는 보고되었지만, 이상 상황이 발생한 돼지를 특정하여 식별하는 연구는 찾아보기 힘들다. 따라서, 본 연구에서는 소리를 활용하여 이상 상황이 발생함을 탐지한 후 영상을 활용하여 소리를 낸 특정 돼지를 식별할 수 있는 시스템을 제안한다. 해당 시스템의 주요 알고리즘은 활성 화자 탐지 문제에서 착안하여 이를 돈사에 맞게 적용하여, 비정상 소리를 내는 활성 돼지를 식별 가능하도록 구현하였다. 제안한 방법론은 모의 실험을 통해 돈사 내의 이상 상황이 발생한 돼지를 식별할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.