• 제목/요약/키워드: 이상기상

검색결과 1,908건 처리시간 0.04초

산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증 (Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation)

  • 민성현;윤석희;원명수;천정화;장근창
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.244-255
    • /
    • 2022
  • 본 연구는 국내의 ASOS 및 AWS와 AMOS 관측 값을 사용하여 1km 고해상도의 산악기상 격자 값을 추정하고 평가하였다. 해발고도 200m이상을 산악지역으로 정의하고 ASOS, AWS, AMOS 기상관측소를 산악기상이 반영된 기상데이터와 산악기상이 반영되지 않는 기상데이터로 나누었다. 2013년에서 2020년까지 산악기상 데이터를 적용하고 편의보정기법(bias correction method)방법을 통하여 산악기상 적용에 따른 보정계수를 산출하고 적용하여 보정계수 및 산악기상 데이터가 반영된 고해상도 산악기상기온 격자 데이터를 생성하였다. 추정된 산악기상기온 격자데이터는 검증지점의 기상 기온 실측 값과 비교하여 평가하였다. 산악기상 데이터 반영 및 보정계수가 반영된 산악기상 고해상도 격자 기온은 산악기상이 반영되지 않는 격자기온보다 RMSE가 34%(평균기온), 50%(최저기온), 31%(최고기온)가 감소하였다. 이는 산악기상 정보기반과 산악기상 보정계수를 적용이 국내 산악기상고해상도 격자 생성에 있어서 정확도를 크게 개선시킬 수 있음을 시사하였다. 이러한 1km 고해상도의 기온 격자데이터는 추후 기후변화에 대한 산림생태계 변화 및 산림재해 모델의 검증을 위한 데이터로 매우 유용하게 활용될 수 있을 것이라 사료된다.

이탈리안 라이그라스의 단파 및 혼파 재배가 건물수량 및 사료가치에 미치는 영향 (Effect of Monoculture and Mixtures on Dry Matter Yield and Feed Value of Italian Ryegrass (Lolium Multiflorum Lam.))

  • 정종성;최보람;한옥규;이배훈;최기춘
    • 한국초지조사료학회지
    • /
    • 제43권2호
    • /
    • pp.88-94
    • /
    • 2023
  • 본 연구는 이탈리안 라이그라스(IRG)를 단파 및 혼파에 따라 건물수량의 차이를 비교 분석하여 이상기상 발생 시 적합한 품종을 추천하기 위하여 실시하였다. 천안의 평균온도와 천안의 30년 간 평균온도는 비슷한 경향이었으나, 11월과 3월은 이상기상으로 판단된다. IRG 품종은 Green Fram(GF, 극조생), Kowinearly(KE, 조생), Kowinmaster(KM, 중생), Hwasan 104(H104, 만생)로 단파 또는 혼파하였다. GF 출수 기준으로 수확 시 GF+H104의 건물수량이 유의적으로 가장 높게 나타났다(p<0.05). KE와 KM 출수기준으로 수확 시 KE 및 KE+KM의 건물수량이 유의적으로 높게 나타났다. H104 출수기준으로 수확 시 건물수량은 처리간에 유의적인 차이는 없었으나(p>0.05). KM이 16,763.1 kg/ha로 가장 높았다. IRG 수확시기의 건물수량을 비교하였을 때 KE, KM의 단파 및 혼파에서 가장 높았다. 최근 봄 가뭄 등 이상기상의 발생 빈도가 높아지고 있으므로 이상기상에 대비하기 위하여 조생 및 중생을 이용한 IRG 혼파재배가 필요한 것으로 판단된다.

인공신경망을 이용한 기상관측장비 결측 보완 기술에 관한 연구 (A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments)

  • 민재식;이무훈;지준범;장민
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.245-252
    • /
    • 2016
  • 본 연구는 현재 운영 중인 자동기상관측장비인 ASOS와 AWS의 결측에 대해 안공신경망을 활용하여 주변 관측값을 기반으로 결측을 보완하기 위한 연구이다. 2011년부터 2015년까지 수집된 서울지역 기온, 습도, 풍속을 대상으로 학습데이터를 구성하고 인공신경망을 통해 학습모델을 구축하였으며, 서울관측소를 결측으로 가정하고 학습 모델에 대한 검증을 수행하였다. 학습횟수 증가에 따른 민감도 실험 결과 초기종료는 학습횟수 2,000회에서 나타났다. 관측과 추정치의 상관관계는 모든 기상변수에서 0.6이상이었으며 기온과 습도의 경우 각각 0.9, 0.8 이상의 높은 상관성을 보였다. RMSE는 대부분 기상변수에 대해 학습횟수가 증가함에 따라 꾸준히 감소하지만 풍속의 경우 뚜렷한 증감 경향이 나타나지 않았다. 학습시간은 학습횟수가 증가할수록 지수함수적으로 증가하는 경향을 보였다. 학습 횟수 40회의 ANN 성능은 초기종료 시점까지 향상된 결과에 80%이상의 효과를 볼 수 있으며 2초 내의 빠른 학습시간으로 신속한 결측 보완을 통해 보다 상세한 기상정보의 활용이 가능할 것으로 기대된다.

경험적 모드분해법을 활용한 우리나라 강수의 예측 (Predictation of Precipitation using Empirical Mode Decomposition)

  • 최원영;신홍준;김태림;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2016
  • 최근 기후변화로 인한 기상이변이 빈번히 발생하면서 그로 인한 피해도 점점 증가하고 있다. 이를 최소화하기 위해서는 기후변화가 강수에 미치는 영향에 대한 연구가 필요하며, 특히 강수의 기후변화를 고려한 장기적인 변동에 대한 예측이 매우 중요하다. 그 중, 기후변화로 인한 강수현상의 변화를 분석하기 위한 방법 중 하나로 강수 현상이 주변 기후 요소의 분포에 영향을 받는다는 가정 하에 기상인자를 통하여 강수를 예측하는 방법이 있다. 우리나라에 영향을 미치는 주변 기상인자들과 강수 간의 상관관계를 분석하여 상관관계가 높게 나타나는 기상인자를 통해 우리나라 강수량을 예측하면 장기적인 관점에서 강수 예측의 정확도를 높일 수 있다. 하지만 상관관계 분석에 있어서 강수 원 자료 와 기상인자간의 상관관계를 비교할 경우 원 자료가 가지는 큰 변동성으로 인해 정확한 상관관계 분석이 이루어지지 않을 가능성이 크다. 따라서 강수자료를 분해하여 분해된 요소별로 상관관계를 분석하여 분석의 정확도를 높일 필요가 있다. 다양한 자료 분해 방법중 경험적 모드분해법(Empirical Mode Decomposition, EMD)을 사용할 경우 자료의 분해에 있어서 주기성, 경향성에 따라 분해가 가능하며, 비정상성을 가지고 있는 시계열에 대해 효과적으로 분해가 가능한 장점이 있다. 본 연구에서는 30년 이상의 자료기간을 가지는 지점의 강수량 자료를 바탕으로 경험적 모드분해법을 이용하여 강수자료를 분해하고, 이를 다양한 기상인자와의 상관관계를 분석함으로써, 우리나라 강수량 변동과 연관이 있는 기상인자들을 선별하였다. 선별된 기상인지를 바탕으로 다중회귀분석을 수행하여 기상인자를 독립변수로 하는 강수 예측식을 구축하여 우리나라 강수의 예측 가능성을 살펴보고자 한다.

  • PDF

도시지역의 홍수위험 매트릭스 개발 및 활용성 평가에 관한 연구 (Development and Assessment of Flood Risk Matrix in Urban Area)

  • 최영제;안재황;차대성;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.64-64
    • /
    • 2019
  • 도시지역은 인구 및 사회인프라시설 등이 밀집되어 있어 홍수 발생 시 타 지역에 비하여 큰 피해가 발생한다. 우리나라의 경우 2017년 부산 지역과 2018년 서울 지역에 시간당 최대 100 mm 이상의 강우가 발생하여 인명 및 재산피해를 발생시켰다. 이러한 도시홍수 피해를 저감시키기 위해서는 수방시설물의 유지관리 뿐만 아니라 한정적인 물자와 인력을 효율적으로 활용하기 위한 홍수예보 방안이 필요하며 정확도 높은 기상예보가 수반되어야 한다. 현재 지자체에서는 기상청의 기상특보를 활용하여 홍수대응을 실시하고 있으나 이는 전국적으로 동일한 기준으로 각 지역의 홍수특성을 반영할 수 없다는 문제가 있다. 또한 국내에서는 정확도 높은 기상예측을 위해 다양한 기상 수치예보모델을 활용하고 있으나 급변하는 기상상황을 정확히 예측하는 데에는 한계가 있다. 수치예보모델의 한계를 극복하기 위하여 현재 영국에서는 강우 앙상블 자료를 활용한 영향예보 도입이 활발히 진행되고 있다. 영향예보란 단순 기상상황 뿐만 아니라 기상현상이 발생시킬 수 있는 위험수준과 그 위험수준이 발생할 확률을 함께 예보하는 방안이다. 본 연구에서는 부산광역시 동래구 지역을 대상으로 과거 피해 발생 강우량 및 지역의 확률강우량 등을 활용하여 지역특성에 맞는 총 4단계의 강우기준을 제시함과 더불어 기상현상의 발생확률을 조합한 홍수위험 매트릭스(Flood Risk Matrix)를 개발하였다. 또한 개발된 홍수위험 매트릭스의 활용성 평가를 위해서는 2016년, 2017년 기상청에서 산출한 국지규모 앙상블예측시스템(Local Ensemble Prediction System, LENS)의 강우 앙상블 자료를 활용하였다. 그 결과 짧게는 24시간 전, 길게는 72시간 전에 홍수피해 발생의 예보가 가능한 것으로 분석되었다. 향후 본 연구에서는 연구 대상 지역을 확대하여 각 지역에 적합한 홍수위험 매트릭스를 개발하고, LENS자료를 활용한 활용성 평가를 통해 실무에 적용 가능한 홍수예보 방안을 마련할 계획이다.

  • PDF

영동지역 기상조건이 구름 및 강설 모의에 미치는 영향: 이상 실험 기반의 사례 연구 (Effects of Meteorological Conditions on Cloud and Snowfall Simulations in the Yeongdong Region: A Case Study Based on Ideal Experiments)

  • 김유준;안보영;김백조;김승범
    • 대기
    • /
    • 제31권4호
    • /
    • pp.445-459
    • /
    • 2021
  • This study uses a cloud-resolving storm simulator (CReSS) to understand the individual effect of determinant meteorological factors on snowfall characteristics in the Yeongdong region based on the rawinsonde soundings for two snowfall cases that occurred on 23 February (Episode 1) and 13 December (Episode 2) 2016; one has a single-layered cloud and the other has two-layered cloud structure. The observed cloud and precipitation (snow crystal) features were well represented by a CReSS model. The first ideal experiment with a decrease in low-level temperature for Episode 1 indicates that total precipitation amount was decreased by 19% (26~27% in graupel and 53~67% in snow) compared with the control experiment. In the ideal experiment that the upper-level wind direction was changed from westerly to easterly, although total precipitation was decreased for Episode 1, precipitation was intensified over the southwestern side (specifically in terrain experiment) of the sounding point (128.855°E, 37.805°N). In contrast, the precipitation for Episode 2 was increased by 2.3 times greater than the control experiment under terrain condition. The experimental results imply that the low-level temperature and upper-level dynamics could change the location and characteristics of precipitation in the Yeongdong region. However, the difference in precipitation between the single-layered experiment and control (two-layered) experiment for Episode 2 was negligible to attribute it to the effect of upper-level cloud. The current results could be used for the development of guidance of snowfall forecast in this region.

기계학습모델을 이용한 이상기상에 따른 사일리지용 옥수수 생산량에 미치는 피해 산정 (Calculation of Damage to Whole Crop Corn Yield by Abnormal Climate Using Machine Learning)

  • 김지융;최재성;조현욱;김문주;김병완;성경일
    • 한국초지조사료학회지
    • /
    • 제43권1호
    • /
    • pp.11-21
    • /
    • 2023
  • 본 연구는 기계학습을 기반으로 제작한 수량예측모델을 이용하여 PCR 4.5 시나리오에 따른 사일리지용 옥수수(WCC)의 피해량 산정 및 전자지도를 작성할 목적으로 수행하였다. WCC 데이터는 수입적응성 시험보고서(n=1,219), 국립축산과학원 시험연구보고서(n=1,294), 한국축산학회지(n=8), 한국초지조사료학회지(n=707) 및 학위논문(n=4)에서 총 3,232점을 수집하였으며, 기상데이터는 기상청의 기상자료개방포털에서 수집하였다. 본 연구에서 이상기상에 따른 WCC의 피해량은 RCP 4.5 시나리오에 따른 월평균기온 및 강수량을 시간단위로 환산하여 준용하여 산정하였다. 정상기상에서 DMY 예측값은 13,845~19,347 kg/ha 범위로 나타났다. 이상기상에 따른 피해량은 이상기온 2050 및 2100년 각각 -263~360 및-1,023~92 kg/ha, 이상강수량 2050 및 2100년 각각 -17~-2 및-12~2 kg/ha였다. 월평균기온이 증가함에 따라서 WCC의 DMY는 증가하는 경향으로 나타났다. RCP 4.5 시나리오를 통해 산정한 WCC의 피해량은 QGIS를 이용하여 전자지도로 제시하였다. 본 연구는 온실가스 저감이 진행된 시나리오를 이용했지만, 추가 연구는 온실가스 저감이 되지 않은 RCP 시나리오를 이용한 연구를 수행할 필요가 있다.

관측기상자료 및 신경망을 이용한 적설량 추정에 대한 연구 (A Study on the Estimation of Snowfall using Meteorological data and Neural Networks Model)

  • 김연수;김수전;장권희;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.267-267
    • /
    • 2012
  • 전 지구적으로 발생하고 있는 기후변화로 인한 기상이변으로 자연재해 발생빈도 및 피해규모는 증가하고 있는 추세로 나타나고 있다. 이에 따라 많은 연구는 자연재해에 직간접적으로 영향을 미치고 있는 홍수와 가뭄의 변화에 초점이 맞추어져 있는 것이 사실이다. 하지만, 최근에 우리나라의 경우 지난 2011년 2월에는 동해안의 폭설로 인하여 동해안지방 최심신적설량 극값 1위를 경신하였고, 2010년 1월 서울에는 40년만에 최대 적설량을 기록하는 등 최근 한반도에서 발생한 적설로 인하여 사회적 경제적 피해가 증가하고 있다. 따라서, 지구온난화에 기인한 기후변화 연구에서 상대적으로 소홀했던 적설량과 관련한 연구의 중요성도 대두되고 있다. 본 연구에서는 적설량에 온도 및 강수가 미치는 영향을 평가하기 위하여 관측기상자료를 이용하였다. 적설량은 기상인자들의 복잡한 비선형 조합으로 발생하기 때문에 적설량에 영향을 미치는 온도, 강수, 적설량의 비선형 과정들을 고려할 수 있는 신경망 모형을 이용하여 적설량 예측 모형을 구성하였다. 30년 이상의 관측자료를 보유하고 있는 기상청 산하 58개 관측지점의 자료를 이용하여 2002년 이전에 관측된 온도, 강수, 적설량을 지점별로 훈련시켰으며 이를 적설량 예측에 활용하고자 하였다. 이를 위해 구성된 신경망 모형에 2002년 이후 지점별 온도, 강우자료를 이용하여 적설량을 산정하고 통계분석을 실시한 결과 적설량 예측에 적용이 가능함을 확인하였다.

  • PDF

혼합 분포와 은닉 과정 모의를 통한 비정상성 강우/빈도 빈도해석: 전지구 기상학적 변동성의 역할 (Mixed distributions and Laten Process over Nonstationary Rainfall/Flood Frequency Estimates over South Korea: The Role of Large Scale Climate Pattern)

  • 권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.8-8
    • /
    • 2018
  • 전통적인 빈도해석은 정상성 가정을 기초로 단일 확률분포를 강우 및 홍수량 자료에 적용하는 과정을 통해 확률수문량을 추정하는 것을 목적으로 하고 있다. 그러나 전지구적인 기상학적 변동성 및 기후변화로 기인하는 극치수문량의 발생 빈도 및 양적 크기의 변화는 확률통계학적 관점에서 서로 다른 분포특성을 가지게 된다. 대표적인 기상변동성인 엘니뇨가 발생하는 경우 지역에 따라 홍수 및 가뭄이 발생 발생하게 되며, 이러한 극치수문량은 일반적으로 나타나는 홍수 및 가뭄의 분포특성과는 상이한 경우가 많다. 즉, 2개 이상의 확률분포 특성이 혼재된 혼합분포의 특성을 가지는 경우가 나타내게 되며 이를 고려한 빈도해석 기법의 개발 및 적용이 필요하다. 혼합분포를 활용한 빈도해석에서 가장 중요한 사항 중에 하나는 개별 분포에 적용되는 가중치를 추정하는 것으로서 통계학적 관점에서 자료의 특성에 근거하여 내재되어 있는 은닉상태(latent process)를 추정하는 과정과 유사하다. 이와 더불어 앞서 언급된 기상학적 변동성을 빈도해석에 반영하기 위한 비정상성 해석기법의 개발 및 적용도 필요하다. 본 연구에서는 혼합분포를 활용한 비정상성빈도해석모형을 개발하는데 목적이 있으며 개별매개변수의 동적거동 뿐만 아니라 가중치에 대한 시간적인 종속성도 고려할 수 있는 모형으로 동적모형으로 다양한 실험적 해석이 가능하다. 본 연구에서는 개발된 모형을 기반으로 엘니뇨와 같은 기상변동성에 따른 강우 및 홍수빈도해석 측면에서 은닉상태에 변화, 이로 인한 확률분포의 특성 및 설계수문량의 동적변동성을 평가하고자 한다.

  • PDF

기상 빅데이터와 딥러닝 기술을 활용한 비정상성 강우량 모의 기법 개발 (Development of Non-stationary Rainfall Simulation Method using Deep-learning Technique and Bigdata)

  • 소병진;김장경;오태석;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2020
  • 기후변화의 영향으로 국지적 규모의 홍수, 가뭄 등의 피해 규모가 증가하고 있으며, 복사에너지 변화에 기인한 전지구적 대류활동의 변화는 단발성 피해에 확산되어 특정 지역의 기후 패턴 변화로 이어질 수 있다. 대류활동의 변화는 국가별 물순환의 변화로 이어질 수 있으며, 이로 인한 수자원의 변동성은 국가적 수자원 이용에 있어 중요한 요소로 작용될 수 있다. 수자원의 중요성으로 인해 국제적인 기관들은 전지구적 대류활동에 기인한 물순환 과정을 파악하고자 노력하였으며, 그 일환으로 GCMs (Global climate modeling) 등과 같은 모형이 개발되었고, 위성을 통한 전지구 강우량 측정망을 구축하였다. 위성을 통한 전구 강우량 자료와 GCMs에서 산출된 대류과정과 연관된 기후변량 자료들은 빅데이터로 구축되어 제한 없이 제공되고 있다. 정상성 강우 모의 기법은 데이터에 한정된 패턴을 반영하는 모형들로서 기후변화로 인한 기후 변동성 증가를 반영하는데 한계가 존재한다. 본 연구에서는 기상 빅데이터 자료를 기반으로 한반도의 강우량과 기상학적 특성을 연관할 수 있는 머신러닝의 일종인 딥러닝 방법을 접목시킨 강우 모의 기법을 적용하였다. 본 연구의 모형은 기후변화로 인한 기상학적 패턴의 변화를 딥러닝 기법을 통해 식별하고 식별된 기상학적 특성에 기반한 한반도의 강우량을 모의할 수 있다. 본 모형은 단기 및 장기 예측 모형과 결합하여 불확실성을 고려한 단/장기 강우량 평가에 활용될 수 있을 것으로 기대된다.

  • PDF