• Title/Summary/Keyword: 이산화티탄 광촉매

Search Result 40, Processing Time 0.028 seconds

The Properties of VOCs(Benzene, Toluene) with NOx Removal in Exposed Concrete With $TiO_2$(Anatase type) Powder as Photocatalyst (이산화티탄($TiO_2$ anatase) 분말을 광촉매로 사용한 노출 콘크리트의 VOCs(Benzene, Toluene)와 질소산화물(NOx) 제거 특성 연구)

  • Kim, Kwang-Ryeon;Lee, Dong-Bum;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.588-591
    • /
    • 2004
  • Generally, $TiO_2$ powders absorb ultraviolet rays and make oxidation/reduction reactions on its surface. Hydroxide radical(OH), a product of photocatalyst reactions, has so strong oxidation/reduction electric potential that it can oxidize noxious gas like VOCs(Volatile Organic Compounds) and NOx. In this study, $TiO_2$ was substituted for exposed concrete to investigate the purifying degree of VOCs(Benzene, Toluene) and NOx. Anatase types of $TiO_2$ were used as photocatalyst. The sun rays and the ultraviolet were used as a light source. Anatase type $TiO_2$ was better than rutile type in purifying performance. The sunray showed the best purifying performance among the light sources. $3\%$ substitution of $TiO_2$ with the sunray was enough to purify VOCs(Benzene, Toluene) and NOx efficiently.

  • PDF

The Properties of NOx Removal in Cement Mortar With $TiO_2$ Powder as photocatalyst (이산화티탄($TiO_2$) 분말을 광촉매로 사용한 시멘트 모르터의 질소산화물(NOx) 제거 특성)

  • 김광련;이동범;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.671-674
    • /
    • 2003
  • Generally, $TiO_2$ powders absorb ultraviolet rays and make oxidation/reduction reactions on its surface. Hydroxide radical(OH), a product of photocatalyst reactions, has so strong oxidation/reduction electric potential that it can oxidize noxious gas like NOx. In this study, $TiO_2$ was substituted for cement to investigate the purifying degree of NOx. Rutile and anatase types of $TiO_2$ were used as photocatalyst. The sun rays and the ultraviolet were used as a light source. Anatase type $TiO_2$ was better than rutile type in purifying performance. The sunray showed the best purifying performance among the light sources. 3% substitution of TiO$_2$ with the sunray was enough to purify NOx efficiently.

  • PDF

A Study on the Mixing of Ultra High Performance Concrete with Red Mud containing Titan dioxide (이산화티탄이 함유된 레드머드를 혼입한 초고성능콘크리트의 배합에 관한 연구)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.70-71
    • /
    • 2019
  • Interest in indoor air quality is increasing day by day due to various reasons such as industrial development. Because redmud, an industrial subsidiary, contains titanium dioxide, this study evaluated self-consolidation performance with Slump Flow Test, J-Ring Test, and L-Box Test by mixing redmud in a mixture of ultra-high performance concrete, and sought the optimal combination with high flowability. In addition, the UHPC mixing experiment with photocatalyst was conducted, and the photocatalyst was replaced by the weight ratio of cement and the redmud by the weight ratio of fine aggregate and mixed with the concrete mixture.

  • PDF

Study of Degradation of Bisphenol A with $TiO_2$ Powder in CPC System (CPC (Compound Parabolic Collector) 내 이산화티탄을 이용한 비스페놀 A (Bisphenol A)의 분해에 관한 연구)

  • Hwang, An-Na;Park, Myung-Hee;Lim, Beom-Guk;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2011
  • In this study, photocatalytic degradation and mineralization of bisphenol A (BPA), which has been listed as one of endocrine disruptors, were carried out in the CPC system using $Tio_2$ slurry and UVA irradiation. The degradation efficiency has been investigated under the controlled parameters including initial concentration (5, 10, 20 mg/L), dosage of $Tio_2$ (0.1, 0.5, 1.0 g/L), UVA power (0, 80, 120 W) and temperature (0, 20, 30). At 10mg/L of initial concentration, BPA was degraded above 80% after 10min, BPA were degraded 97% and 49% at 20 mg/L and 30 mg/L, respectively. At $Tio_2$ dosage was 0.1 and 0.5 g/L, the degradations of BPA showed similar trend and were about 70% after 1 hr, and the degradation of BPA was above 80% after 30 min at 1 g/L of $Tio_2$ dosage. The increase of degradation seem to be due to the increase in the total surface area, namely number of active sites, available for the photocatalytic reaction as the dosage of photocatalyst increased. When the UVA power was 120 W, BPA was degraded rapidly above 60% after 10min of reaction time. To investigate the effect of temperature, carried out experiment controlled temperature, there were no significant differences depending on the temperature. After 1hr, the degradation of BPA were 46%, 67%, and 69% at 10, 20 and $30^{\circ}C$.

Preparation and Characterization of the Photocatalysts Transition Metal-Doped Ti-SCM (전이금속을 담지한 Ti-SCM 제조 및 특성연구)

  • Jung, Won-Chae;Hong, Ji-Sook;Suh, Jeong-Kwon;Suh, Dong-Hack
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.445-451
    • /
    • 2010
  • $TiO_2$ shows considerably efficient photoreaction activity under the ultraviolet range but it has disadvantage that there is no activity in the visible light range. In this study, it was tried to find a solution for the problem of this kind of photocatalyst by utilizing transition metal, which can show electronic transition with $TiO_2$ in the visible light area. Photocatalyst was prepared, which can have photocatalytic activity in the wide wavelength range, not only ultraviolet region but also visible light area and prevent the combination of electron and hole hindering the photoreaction. For this purpose, by using the ion exchange method, $TiO_2$ precursor and transition metal precursor were dipped into H typed strong acid ion-exchange resin. And two kind photocatalysts (Ti-M-SCM) in which transition metal and titanium dioxide coexist through the carbonization/activation process was prepared. Moreover, photolytic reaction under the wavelength 254 nm and 365 nm was performed for humic acid (HA) in the continuous reactor in order to estimate the efficiency of produced Ti-M-SCM.

Degradation of Formaldehyde in Indoor Air Quality by $TiO_2$ Sol Coated Wall Paper ($TiO_2$ 광촉매 졸(Sol)의 벽지코팅에 의한 실내공기질에서의 포름알데히드 분해)

  • An, Sang-Woo;Cho, Il-Hyoung;Park, Jae-Hong;Chang, Soon-Woong;Kim, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.872-877
    • /
    • 2006
  • It has been concerned about the indoor air contaminants because of the hours spend in indoor space. These contaminants are emitted from various indoor facilities. Therefore, even though there concentrations are very low, adverse effects can't be ignored. However, treatment technologies are insufficient to deal with these contaminants. For this reason, the objective of this study was to investigate the feasibility of artificial ultraviolet(UV) detoxification using $TiO_2$ system for degrading formaldehyde contaminated indoor air. The experiment was also performed to investigate the formaldehyde removal effect of fluorescence lamp as an alternative UV light source because it is used in indoor as a light source. The results presented demonstrated that as the $TiO_2$ dosage is more and the reaction area is wider, the photocatalytic degradation rate does more enhanced. Degradation of TCE was more rapid used in $UV_{254}$ lamp than in fluorescence lamp. However, if it is operated during enough time, it will be able to remove the considerable quantity of TCE in case of using fluorescence lamp.

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Development of High Performance Curing Agent and Effective Dispersion Method of Nanomaterials (고성능 피막양생제 개발 및 나노물질의 분산방안 평가)

  • Son, Ho-Jung;Yoo, Byung-Hyun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.230-236
    • /
    • 2019
  • Recently, issues related to the quality of concrete have continuously resulted in surface quality problems, such as the exfoliation of concrete surfaces due to the cost reduction of cement and poor quality fine aggregate, scaling of surfaces caused by laitance, and plastic shrinkage cracks. Prompted by social issues, the application of a photo catalyst to road structures is being attempted to solve the environmental problems caused by fine dust and automobile exhaust. In this study, chemical admixtures were developed to improve the surface quality of concrete and to apply and distribute titanium dioxide in nanoscale sizes to provide basic data for the development of a photocatalyst-curing agent. As a result of the experiment, silicon and silane were reviewed as a raw material as a curing agent to develop a high performance curing agent with better film performance than conventional curing agents because they could form a film quickly on a fresh concrete surface. The distributed stability of the ultrasonic disperser showed the best performance through an outdoor test for four weeks to review the dispersion measures for the application of nanomaterials.

Photocatalytic Degradation of Trichloroethylene over Titanium Dioxides (이산화티탄에 의한 삼염화에틸렌의 광촉매 분해반응)

  • Lee, Yong-Doo;Ahn, Byung-Hyun;Lim, Kwon-Taek;Jung, Yeon-Tae;Lee, Gun-Dae;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1035-1040
    • /
    • 1999
  • Photocatalytic degradation of trichloroethylene has been carried out with UV-illuminated $TiO_2$-coated pyrex reactor in gas phase. Three commercial $TiO_2$ oxides were used as catalysts. The effect of reaction conditions, initial concentration of trichloroethylene, concentration of oxidant and light intensity on the photocatalytic activity were examined. Anatase-type catalyst showed higher activity than rutile-type, but P-25 catalyst showed the highest activity. The degradation rate increased with the decrease of flow rate and initial trichloroethylene concentration. It was preferable to use air as an oxidant. In addition, reactants with the water vapor decreased the activity and the degradation rate increased with the increase of light intensity, but it was very low with solar light. Photocatalytic deactivation was not observed at low concentration of trichloroethylene.

  • PDF

Decomposition of Gas-Phase Benzene on TiO2 Coated Alumina Balls by Photocatalytic Reaction (이산화티탄이 코팅된 알루미나 볼에서 광촉매 반응에 의한 기상벤젠의 분해)

  • Lee Nam-Hee;Jung Sang-Chul;Sun Il-Sik;Cho Duk-Ho;Shin Seung-han;Kim Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.407-412
    • /
    • 2004
  • Photo decomposition of gas phase benzene by $TiO_2$ thin films chemically deposited on alumina balls were investigated under UV irradiation. Photo decomposition rates were measured in real time during the reaction using a photo ionization detector, which ionizes C-H bonding of benzene molecules and then converts into volatile organic compounds (VOCs) concentrations. From the measuring results, the VOCs concentration increased instantly when IN irradiated because C-H bonds of benzene molecules strongly absorbed on the surface of $TiO_2$ films before the IN irradiation was destroyed by photo decomposition. After that, the VOCs concentration decreased with increasing surface area of $TiO_2$ and reaction time under the IN irradiation. At the optimal conditions for the photo decomposition of gas phase benzene, the reaction rate of the photo decomposition for high concentrations (over 60 ppm) was slow but that of relatively low concentration (under 60 ppm) was fast, due to limited surface area of $TiO_2$ thin films for the reaction. Thus, it is concluded that the photo decomposition rate was mainly affected by the surface area of $TiO_2$ or absorption reaction.