• Title/Summary/Keyword: 이산화탄소 포집, 저장

Search Result 109, Processing Time 0.021 seconds

건식 흡착제를 이용한 $CO_2$ 포집기술

  • Park, Su-Jin;Lee, Seul-Lee
    • Journal of the KSME
    • /
    • v.53 no.6
    • /
    • pp.26-30
    • /
    • 2013
  • 지구온난화의 주범인 이산화탄소의 포집저장기술(CCS) 중 포집기술에 집중하여 기술하였다. 이산화탄소 포집기술은 연소 후 포집, 연소 전 포집, 순산소 연소 포집기술로 분류되는데, 그 중에서도 연소 후 포집기술은 기존발생원에 적용하기 가장 용이한 기술로 판단되고 있다. 따라서 이 글에서는 연소 후 포집기술에 적용되는 다양한 기술 중 건식 고체 흡착제의 종류 및 건식 고체 흡착제를 이용한 연소 후 이산화탄소 포집기술 개발의 현황에 대하여 기술하였다.

  • PDF

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline (파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발)

  • Lee, Ji-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.373-382
    • /
    • 2016
  • Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Characteristics of Solid Regenerable $CO_2$ sorbents for Pre-combustion $CO_2$ Capture (연소전 $CO_2$ 포집용 분무건조 고체 흡수제의 물성 및 $CO_2$ 흡수 특성)

  • Baek, Jeom-In;Ryu, Jungho;Lee, Joong Beom;Eom, Tae-Hyoung;Kim, Ji-Woong;Jeon, Eon-Sik;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.110.2-110.2
    • /
    • 2010
  • 현재 상용가능한 연소전 $CO_2$ 포집 기술은 습식 스크러빙 방식으로 고온의 합성가스를 상온 수준으로 온도를 낮춘 후 $CO_2$를 포집해야 하고 포집된 $CO_2$의 압력이 낮아 재압축하여 저장소로 보내야 함에 따라 큰 폭의 열효율 손실이 불가피하다. 고온 고압에서 이산화탄소를 포집할수 있는 고체 흡수제를 이용할 경우 이산화탄소 포집 치 저장 추가에 따른 시스템 효율 저하를 최소화할 수 있다. 고체 $CO_2$ 흡수제는 서로 연결된 두 개의 유동층 반응기를 순환하면서 흡수탑에서는 합성가스 중의 $CO_2$를 흡수하고 재생탑에서는 고온의 수증기와 접촉하여 흡수된 $CO_2$를 다시 배출함으로써 재생된다. 따라서 건식 재생 $CO_2$ 흡수제는 유동층 공정에 응용가능한 물성과 함께 높은 $CO_2$ 흡수능과 빠른 반응성이 요구된다. 본 연구에서는 유동층 공정에 적합한 물성을 가진 연소전 $CO_2$ 포집용 고체 흡수제를 분무건조법으로 제조하였으며, 모사 합성가스를 이용하여 열중량분석기와 기포유동층반응기를 이용하여 $200^{\circ}C$ 흡수, $400^{\circ}C$ 재생, 압력 20 bar 조건으로 반응성을 측정하였다. 개발된 고체 $CO_2$ 흡수제는 열중량분석기에서는 반응 후 10-13 wt%의 무게증가를 나타내었고 기포유동층반응기에서는 8-10 wt%의 $CO_2$ 흡수능을 보여주었다. 특히 수증기의 함량이 10% 이상에서 높은 흡수능을 나타내어 수증기가 반응에 크게 작용하고 있음을 알 수 있었다.

  • PDF

Membrane-Based Carbon Dioxide Separation Process for Blue Hydrogen Production (블루수소 생산을 위한 이산화탄소 포집용 2단 분리막 공정 최적화 연구)

  • Jin Woo Park;Joonhyub Lee;Soyeon Heo;Jeong-Gu Yeo;Jaehoon Shim;Jinhyuk Yim;Chungseop Lee;Jin Kuk Kim;Jung Hyun Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The membrane separation process for carbon dioxide capture from hydrogen reformer exhaust gas has been developed. Using a commercial membrane module, a multi-stage process was developed to achieve 90% of carbon dioxide purity and 90% of recovery rate for ternary mixed gas. Even if a membrane module with being well-known properties such as material selectivity and permeability, the process performance of purity and recovery widely varies depending on the stage-cut, the pressure at feed and permeate side. In this study, we verify the limits of capture efficiency at single-stage membrane process under various operating conditions and optimized the two-stage recovery process to simultaneously achieve high purity and recovery rate.

Biomimetic Engineering of Carbon Dioxide Capture (생체모방공학을 이용한 이산화탄소 포집)

  • Kim, Dae-Hoon;Vinoba, Mari;Shin, Woo-Sup;Lim, Kyong-Soo;Jeong, Soon-Kwan;Kim, Sung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.491-494
    • /
    • 2010
  • 지구온난화의 주범인 온실가스 중 이산화탄소 농도 증가에 따라 현재 전 세계적으로 사회적, 환경적, 경제적으로 피해가 나타나고 있다. 그래서 CCS연구를 적용하여 이산화탄소를 포집하는 연구가 활발하게 진행 되고 있으나 분리, 수송, 저장 등의 추가적인 비용이 발생하는 문제점을 가지고 있다. 본 논문은 생체촉매효소를 이용하여 이산화탄소를 포집하는 연구를 하였다. 반응온도, pH, 이산화탄소 농도 등의 변수를 이용한 생체촉매효소의 활성평가, 반응속도, 광물화의 특성에 관하여 연구하였다.

  • PDF

Offshore CCS Plant Technology for 3Mt-CO2 Storage (연간 300만톤급 온실가스 감축을 위한 해양 CCS 플랜트 기술)

  • Huh, Cheol;Kang, Seong-Gil;Lee, Keum-Suk;Park, Young-Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.123-128
    • /
    • 2013
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes it possible not only to reduce a huge amount of carbon dioxide directly from coal power plant but also to maintain the carbon concentrated-energy infrastructure. The objective of the present paper is to review and introduce R&D progress and large scale demonstration plan focused on marine geological storage in Republic of Korea.

Study on Selective Separation of Carbon Dioxide from Land-fill Gas using Hydroquinone Clathrate (하이드로퀴논 크러스레이트를 이용한 매립가스 내 이산화탄소 분리에 관한 연구)

  • Han, Kyuwon;Moon, Donghyun;Shin, Hyungjoon;Lee, Jaejung;Yoon, Jiho;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.151.2-151.2
    • /
    • 2010
  • 본 연구는 하이드로퀴논(HQ)을 이용하여 매립가스로부터 이산화탄소를 선택적으로 분리하고 유기 크러스레이트 형태로 분리 및 저장에 적용하기 위한 연구로써 하이드로퀴논을 다양한 객체가스와 반응시키면서 열역학적 안정영역을 파악하고 분광학적 방법을 이용하여 미세구조 변화를 분석하고자 하였다. 먼저 ${\alpha}$-HQ를 고압(4MPa)의 이산화탄소와 반응시켜 이산화탄소가 포집된 ${\beta}$-HQ를 합성하였고, 동공 내에 존재하는 이산화탄소를 제거하여 동공을 유지하는 empty ${\beta}$-HQ를 만들었다. 온도를 증가시키면서 XRD 패턴을 측정한 결과 298 K 에서 378 K 사이에서 ${\beta}$-HQ 시료는 서서히 empty ${\beta}$-HQ 의 구조로 전환되었으며 378 K 이상의 온도에서 ${\alpha}$-HQ 구조로 급격히 전환되었다. 또한 생성된 empty ${\beta}$-HQ 동공에 이산화탄소가 포집, 해리되는데 있어서 온도의 영향을 확인하기 위해 298K과 343K의 온도에서 실시간 라만분광법으로 측정하였다. 그 결과 298K에서 약 200분의 시간이 지난 후 이산화탄소는 하이드로퀴논 동공 내로 포집되어 안정화되었으며 압력해방 후에는 빠져나가지 않고 동공 내에 존재함을 확인하였다. 그러나 343K에서는 급격히 포집되어 30분 이내 안정화되었고, 압력해방 후 동공 내에 존재하지 못하고 빠져나가는 것을 확인하였다. Empty ${\beta}$-HQ의 이산화탄소 선택도를 관찰하기 위해 이산화탄소와 메탄, 수소, 질소의 조성이 각각 30%, 30%, 20%, 20%인 혼합가스와 반응시킨 후 가스 크로마토그래프 분석을 실시한 결과, empty ${\beta}$-HQ내 포집된 가스 중 이산화탄소의 조성이 약 80% 이상으로 나타나 높은 선택도를 나타냄을 관찰하였다.

  • PDF

Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG (온실가스 대량감축을 위한 $CO_2$ 지중저장의 기술 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Yoon, Sung-Wook;Matsuoka, Toshifumi
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.309-317
    • /
    • 2010
  • CCS (Carbon dioxide Capture and Storage) is a means of mitigating the contribution of $CO_2$ to the Greenhouse gas, from large point sources such as power plants and steel companies. CCS is a process whereby $CO_2$ is captured from gases produced by fossil fuel combustion, compressed, transported and injected into deep geologic formations for permanent storage. CCS applied to a conventional power plant can reduce $CO_2$ emissions to the atmosphere by approximately 80~90% compared to a plant without CCS. The IPCC estimates that the economic potential of CCS will be between 10% and 55% of the total carbon mitigation effort by year 2100. In this paper, overseas sites where CCS technology is being applied and technical development trends for CCS are briefly reviewed.