In this study, we attempt to examine the economic impacts of the CCS marine geological storage demonstration project in Korea using Input-Output analysis utilizing the inter-industry relation table issued in 2013. In particular, this study defines the $CO_2$ ocean storage industry and then added the inter-industry relation table and treated the $CO_2$ ocean storage industry as exogenous. In addition, this study assumed two scenarios based on the means of $CO_2$ transport, which are pipe and ship. After defining the industry and scenarios, this study investigates the production-inducing effect, value added inducing effect, and employment-inducing effect of the industries associated with the $CO_2$ ocean storage industry based on a demand-driven model. The results pertaining to the scenarios are estimated as follows: total production-inducing effects, value added inducing effects, and employment-inducing effects are calculated as 1.9044 won, 1.2487 won and 16.7224 people/billion won, respectively. In addition, compared to other industries, the indirect economic impacts of the $CO_2$ ocean storage industry are ranked high: the rankings of production-inducing effects, value added inducing effects, and employment-inducing effects are fourth, second, and fifth, respectively.
$CO_2$-EOR ($CO_2$-Enhanced Oil Recovery)은 석유회수증진법 중 하나로, 석유 생산량을 증대시키는 동시에 이산화 탄소를 지중에 격리시킬 수 있는 기술이다. 하지만 이산화탄소 주입 시, 지층 내 균열이 발생하는 경우 저류층 내에 이산화탄소의 영구저장이 어려워지고, 지하수 및 토양의 오염을 야기할 수 있다. 따라서 이 연구에서는 인도네시아 머루압 유전에 이산화탄소 주입 시, 미소진동 모니터링을 수행하여 저류층 내 균열의 발생여부를 파악하고자 하였다. 미소진동 초동 발췌에는 Improved MER (Modified Energy Ratio) 방법을 이용하였다. 초동 발췌 후에는 이벤트의 방위각을 계산하기 위하여 다성분 지오폰에서 기록된 트레이스를 이용해 호도그램 분석을 수행하였다. 최종적으로 초동 발췌 결과와 호도그램 분석 결과를 이용하여 미소진동 위치결정을 수행하였다. 미소진동 위치결정 결과를 통해 저류층 주변에 균열의 발생여부를 확인해 본 결과, 미소진동 발생 위치는 모두 지표에서 나타나고 있으며 저류층 내 균열은 확인되지 않았다. 또한 잡음의 특성을 분석하여 초동 발췌된 이벤트가 대부분 규칙적인 기계적 잡음에 의한 것임을 확인할 수 있었다.
지구온난화 문제는 한국가의 문제가 아니라 인류의 문제로 대두되어 많은 이에대한 많은 연구가 이루어 지고 있다. 지구온난화의 주 대상물질인 화석연료로부터 연소시 발생하는 이산화탄소를 감축하기위한 많은 규제와 노력이 요구된다. CCS(Carbon Capture & Storage)란 화석연료로 부터 연소시 대기 중으로 배출되는 온실가스($CO_2$)를 포집하여 재생 또는 지중, 해양에 저장하는 기술로서 국가녹색성장 핵심기술중의 하나로 분류되며, $CO_2$ 회수방안, 저장, 처리관련 연구를 비롯하여 국내외 적으로 활발한 연구가 이루어 지고 있다. 또한 순산소 연소기술을 통한 $CO_2$ 회수, 처리기술은 연료의 산화제를 공기대신 순도 95% 이상의 고농도 산소를 이용하여 순산소연소를 하며, 이때 발생하는 배가스의 대부분은 $CO_2$와 수증기로 구성되어 있다. 발생된 배가스의 약 70~80%를 다시 연소실로 재순환시켜 연소기의 열적 특성에 적절한 연소가 가능하도록 최적화함과 동시에 배가스의 $CO_2$ 농도를 80% 이상으로 농축시켜 회수를 용이하게 하며, 동시에 공해물질은 NOx 발생량을 10ppM 이하로 줄일 수 있는 기술이다. 천연가스를 생산하는 LNG기지에서 연소에 의한 이산화탄소를 발생시키는 기기로는 수중연소식기화기(SMV ; Submerged Combustion Vaporizer)를 들 수 있다. SMV는 버너를 이용하여 $-162^{\circ}C$ LNG를 $10^{\circ}C$의 LN로 기화시키는 설비로서 특히 동절기에 작동시키며 $CO_2$를 배출시키는 연소기다. 본 연구에서는 수중연소식 SMV에 순산소 연소방식을 적용하여 천연가스와 산소를 연소시키므로서 발생되는 $CO_2$를 LNG냉열을 이용 액체화 시켜 회수하는 연구를 수행하고 있다. 내용중에 수중연 소식 SMV에 대한 순산소 연소기를 개발하는 연구를 수행하였으며, 실제 SMV의 1/10크기, 열량기준 1/900로 모형을 제작하여 실험하였다. 연소기 노즐 은 직경 0.6mm, 배가스가 수조내에서 48개의 노즐을 제작하였다. 실험결과 일정량 이상의 $CO_2$ EGR율이 일정 값 이상이 되면 화염의 길이가 공기/NG 화염 길이와 큰 차이가 없었으며 $CO_2$ EGR율이 100%이상에서는 $CO_2$ EGR율 증가에 따른 화염길이 변화는 크게 나타나지 않았다. CO 배출 농도는 공기/NG 연소의 경우보다 높게 나타났으며, ${\lambda}$가 1.4보다 높은 조건에서는 측정되지 않았다. NOx의 배출 농도는 약 1~8ppm으로 나타났다.
$CO_2$ 저장에 따른 암반 물성의 변화 분석은 지중저장소 정밀 모니터링을 위해 필수적인 요소로서 이에 대한 다양한 각도의 시험 수행과 모델링이 요구된다. 하지만 국내의 경우는 대부분 모델링 연구에 집중되고 있으며, 수치모델에서 필요로 하는 입력자료 대부분이 문헌에 기반을 둔 가정치를 사용하고 있다. 따라서 본 연구에서는 실험실 규모의 $CO_2$ 주입 환경을 모사하는 기술을 고안하고, 초임계 $CO_2$와 반응하는 저류층 암반의 거동 분석을 위해 암석 시료를 이용한 역학적 물성 변화 위주의 실험실 시험을 실시하였다. 시험 대상은 저류층 내에서 덮개암 및 저장층 역할을 하는 셰일 및 사암으로 하였으며, 층간 결합력이 약해 팽창성이 높은 것으로 보고된 셰일에 대해서는 추가적으로 초임계 $CO_2$에 의한 팽창성을 검토 하고자 하였다. 반응 전 후의 변형 거동과 물성변화 관찰을 위해 파괴 및 비파괴 분석 시험을 실시하였다. 단축압축시험 결과 분석을 위해 균열닫힘, 균열개시, 불안정한 균열 성장 구간을 찾아서 검토하였으며, 선형탄성 구간에서의 탄성계수 및 포아송비를 비교 분석하였다. 그리고 비파괴 시험 중 탄성파 속도 측정 시험을 통하여 초임계 $CO_2$에 의한 암석 내부물성변화를 추정하였다. 실험결과, 초임계 $CO_2$ 및 염수, 물 등 반응 조건이 변화함에 따라 암석의 변형거동 양상은 크게 달랐으며 물성 변화도 관측되었다. 덮개암 역할을 하는 셰일의 경우 사암에 비해 반응조건에 따라 물성이 민감하게 변화하였는데 셰일의 이와 같은 특성은 저류층의 안정성에 영향을 미칠 것으로 판단되었다. 본 연구의 결과는 앞으로 추가 실험을 통해 저류층의 지중저장 능력 및 안정성에 영향을 미치는 주요변수들의 상호관계를 규명하는데 기초적인 자료로 활용될 수 있을 것이다.
해수의 용존 이산화탄소 증가가 해양미생물인 Vibrio fischeri의 발광량 및 세포밀도에 미치는 영향을 규명하고자 380(대조구), 1,000, 3,000, 10,000 그리고 30,000 ppm 농도구배에 24시간 동안 노출하고, 매 6시간마다 발광미생물의 발광량과 세포밀도 변화를 측정하였다. 5개 농도구배에 노출된 발광미생물의 발광량은 12시간째에 3,000 ppm 이상의 농도구배에서 대조구와 비교하여 발광량이 유의하게 감소하는 경향을 보였다. 하지만 24시간째에는 30,000 ppm 농도 조건에서만 대조구와 유의한 차이를 보였으며, 10,000 ppm 이하 농도 조건에서는 차이를 보이지 않았다. 발광미생물의 세포밀도는 분광광도계를 이용하여 흡광도를 측정하였고, 각 농도별 시간에 따른 영향은 발광량 변화와 유사하였다. 용존 이산화탄소 농도 변화와 발광미생물의 발광량 및 세포밀도 사이에는 유의한 농도-반응 관계가 있으며, 다만 상대적으로 짧은 시간에 발생하는 저해영향으로 배양이 지속됨에 따라 뚜렷하게 회복하는 특성을 보여 증가된 농도의 이산화탄소 영향이 항상 일정하지 않음을 보여주었다. 본 연구는 해양미생울 개체군 성장에 미치는 이산화탄소의 영향을 평가한 것으로 향후 해수의 용존 이산화탄소 농도 증가가 미치는 다양한 해양생물에 대한 영향 및 위해성 예측과 평가에 활용될 수 있을 것으로 기대한다. 또한 해양미생물에 대한 생태영향평가 결과는 이산화탄소 저감을 위해 추진되고 있는 해양 지중저장사업의 환경위해성평가에도 활용될 수 있을 것이다.
산업혁명이후 대기중 이산화탄소 등 온실기체의 농도는 꾸준히 증가하고 있고, 이에 따른 기후변화와 해수면 상승 등의 문제의 심각성에 대한 전세계적인 관심이 증가하고 있다. 따라서 인간활동에 의해 대기중으로 방출되는 $CO_2$의 배출량을 줄이기 위한 다양한 방법이 제안되고 있다. 그 중에서 최근 $CO_2$를 해양 심층부에 직접 투기하거나(해양분사법), 해저면(해양저류법)또는 지중에 주입(해양지중법)하여 격리하고자 하는 방안에 대한 국내외 관심이 높아지고 있다. 특히 해양은 대기와는 비교도 할 수 없을 만큼 큰 $CO_2$의 저장고로서 이미 대기중 $CO_2$ 농도의 증가는 표층해수로 유입되는 $CO_2$ 유입량을 증가시키고 있다. 향후 100년간 해수로 유입되는 $CO_2$는 크게 증가할 것으로 예상되는데 이에 따라 표층 해수의 pH는 최대 0.4이상 낮아질 수 있다는 전망이 나오고 있다. 이와 같은 해수의 산성화는 산호, 석회조류(cocolithophorid)와 같이 몸의 일부를 석회질로 구성하는 생물들의 성장에 심각한 저해 영향을 미칠 수 있음이 실험적으로 밝혀지고 있다. 뿐만 아니라 성게나 어류의 유생과 같이 환경변화에 민감한 생물들은 $0.1{\sim}0.2$ 정도의 pH 변화에 의해서도 발생이 저해될 수 있다는 연구 결과는 대기중 $CO_2$ 농도 증가에 따른 해양생태계 훼손의 가능성을 더욱 높이고 있다. 반면에 대기중으로 배출되기 전에 포집된 $CO_2$ 심해처리는 처리지역 주변의 용존 이산화탄소 농도를 증가시키고 해수의 pH를 감소시켜 심해생태계를 교란할 수 있는 가능성이 높다. 따라서 심해처리 기술을 개발하는 단계에서 처리과정에서 발생할 수 있는 다양한 생물학적 위해성에 대한 충분한 검토가 필요할 것이다. 국내에서는 발광미생물과 저서단각류에 대한 용존 $CO_2$의 저해 영향에 대한 시범적인 연구가 본 연구진에 의해 수행되었는데 해수의 pH가 1.5 이상 감소한 경우에는 유의한 저해영향이 관찰됨을 알 수 있었다. 특히 단각류의 경우 동일한 pH에서도 $CO_2$로 산성화된 해수의 독성영향이 더욱 큰 것으로 나타났다. 본 논문에서는 현재까지 $CO_2$ 해양생물학적 영향에 관련하여 국내외에서 이루어진 여러 연구 결과들을 방법론에 따라 정리하였다. 이러한 연구 결과들은 향후 대기중 $CO_2$ 증가 또는 해양처리에 따른 용존 $CO_2$ 농도 증가에 따른 생태계 위해성을 예측하는 데에 이용될 수 있을 것으로 판단된다.
낮은 주파수의 자연 전자기장을 이용하는 MT 탐사는 지하 심부의 전기전도도 구조를 규명할 수 있기 때문에, 지열에너지자원 탐사, 이산화탄소의 지중저장을 위한 부지 선정, 인공저류층 지열발전 시스템 유망 지역 탐사 등에 적용되고 있다. 또한 해양 MT 자료를 활용하면 해양전자탐사 자료 해석의 정확도를 높일 수 있다. MT 자료의 해석에 있어 정확한 모델링 기법은 필수적이다. 변유한요소법을 이용한 기존의 MT 모델링 알고리듬에서는 보조장인 자기장을 차분적 방법론에 기초하여 계산하였기 때문에 수직자기장의 정확한 계산에 한계가 있었다. 이 논문에서는 변유한요소법의 기저함수들의 선형결합으로 근사된 전기장을 직접 미분하는 방법으로 수직자기장을 계산하였다. 수치 실험을 통해, 지형이 있는 경우에 수직자기장에 대한 기존의 알고리듬의 결과에 오차가 있음을 확인하였다. 최종적으로, 지형이 있는 모형에 대한 기존의 인덕션 벡터와 티퍼의 결과는 오차가 있는 수직자기장을 이용하였으므로, 이 논문에서는 개선된 알고리듬을 이용하여 올바른 결과를 제시하고자 한다.
Carbon capture and storage (CCS) technology has been suggested as an ultimate strategy for mitigating climate change. However, potential leakage of $CO_2$ from the CCS facilities could lead to serious damage to environment. Plants can be a bio-indicator for $CO_2$ leakage as a cost-effective way, although plants' responses vary with plant species. In this study, a greenhouse experiment was conducted to investigate the relation between the $CO_2$ tolerance of corn species and the initial physiological responses to the elevated soil $CO_2$ concentration. Treatment groups included CI (99.99% $CO_2$ gas injection) and BI (no gas injection). Mean soil $CO_2$ concentration for the CI treatment was 19.5~39.4%, and mean $O_2$ concentration was 6.6~18.4%. The soil gas concentrations in the BI treatment were at the ambient levels. In the CI treatment, chlorophyll content was not decreased until the $13^{th}$ day of the $CO_2$ injection. On the $15^{th}$ day, leaf starch content and stomatal conductance were increased by 89% and 25% in the CI treatment compared to the BI treatment, respectively. This might be due to the compensatory reaction of corn to avoid high soil $CO_2$ stress. However, the prolonged $CO_2$ injection decreased chlorophyll content after 13 days. After $CO_2$ injection, plant biomass was reduced by 25% in the CI treatment compared to the BI treatment. Due to the inhibited root growth, leaf phosphorous and potassium contents were decreased by 54% on average in the CI treatment. This study indicates that corn has a high tolerance to soil $CO_2$ concentration of 30% for 2 weeks by its compensatory reactions such as an maintenance of chlorophyll content and an increase in stomatal conductance.
최근 이산화탄소 지중저장 모니터링 기술 중 하나인 미소진동 모니터링 기술에 대한 관심이 증가하면서 과거에 주로 사용되었던 지오폰이나 지진계가 아닌 분포형 광섬유 센서(distributed acoustic sensing, DAS)의 적용도 증가하고 있다. 특히 DAS를 이용하여 모니터링을 수행하면 시×공간적으로 거의 연속된 자료가 기록되게 되어 자료의 양이 방대해지게 되고 빠르고 정확한 자료 처리가 중요하게 된다. 자료처리 중 이벤트 탐지 및 위상 발췌는 가장 기초적인 과정으로 모든 자료에 대해 필수적으로 수행되어야 한다. 이 논문에서는 기계학습 기반의 P, S파 위상 발췌 알고리즘을 개발하여 전통적인 위상 발췌 방법의 한계를 보완하고, 전이학습 방법을 이용하여 신호 대 잡음비가 낮은 단일 성분 자료만 존재하는 DAS 자료에도 적용이 가능하도록 하였다. 사용된 기계학습 모델은 위상 발췌에 뛰어난 성능을 보이는 합성곱 신경망 기반의 EQTransformer를 ResUNet의 특성을 포함하도록 수정하여 구성하였다. 훈련자료는 전세계적으로 기록된 지진파형 자료인 STEAD자료를 이용하였고 학습 자료에 포함되지 않은 특성들에 대해서도 좋은 성능을 보이도록 기본 자료를 다양하게 변형시킨 자료도 학습에 사용하였다. 개발된 알고리즘은 학습자료와 다른 특성을 갖는 K-net 및 KiK-net 자료에 의해 성능이 검증되었다. 또한, 전이 학습을 통해 DAS 자료의 특성에 맞게 변형시킨 후 포항 장기분지에서 측정된 DAS자료에 적용시켜 그 성능을 검증하였다.
우리나라는 기후변화협약에 대응하기 위한 교토의정서를 비준한 국가로서, 아직 온실가스의 의무감축 대상 국가는 아니다. 그러나 2012년부터 시작될 교토의정서 2차 공약기간 중에 브라질, 중국 및 인도와 같이 2차 의무감축대상이 가장 유력시 되는 국가로 지목되고 있으므로, 이러한 변화에 능동적으로 대처할 수 있는 기술적, 사회적, 정책적 방안이 신속히 마련될 필요가 있다. CCS(carbon capture & storage)란 화석연료로 부터 연소시 대기 중으로 배출되는 온실가스($CO_2$)를 포집하여 재생 또는 지중, 해양에 저장하는 기술로서 국가녹색성장 핵심기술중의 하나로 분류되며, 대료적인 $CO_2$ 발생대상인 석탄화력발전소로 부터 $CO_2$ 회수방안, 회수, 처리관련 연구를 포함하여 국내외 적으로 활발한 연구가 이루어 지고 있다. 순산소 연소기술을 통한 $CO_2$ 회수, 처리기술은 연료(천연가스, 석탄, 석유)의 산화제를 공기대신 순도 95% 이상의 고농도 산소를 이용하여 순산소연소를 하며, 이때 발생하는 배가스의 대부분은 $CO_2$와 수증기로 구성되어 있다. 발생된 배가스의 약 70~80%를 다시 연소실로 재순환시켜 연소기의 열적 특성에 적절한 연소가 가능하도록 최적화함과 동시에 배가스의 $CO_2$ 농도를 80% 이상으로 농축시켜 회수를 용이하게 하며, 특히 공해물질은 NOx 발생량을 10ppM 이하로 줄일 수 있다. 천연가스가 생산되는 LNG기지에서 LNG를 기화시키기 위하여 해수식 기화기(ORV : Open Rack Vaporizer와 수중연소식 기화기(SMV ; Submerged Combustion Vaporizer)를 사용하고 있으며, 특히 SMV는 버너를 이용하여 $-162^{\circ}C$ LNG를 $10^{\circ}C$의 LN로 기화시키는 설비로서 이때 연소시 $CO_2$를 상당량 발생시킨다. 본 논문에서는 SMV에서 순산소 연소방식을 적용하여 연료인 천연가스를 연소시키고, 이때 발생되는 $CO_2$와 수분이 주 성분인 배가스를 연소기에 재순환시켜, 연소실내 고온문제를 해결하며, 최종적으로 배가스중 $CO_2$는 $-162^{\circ}C$의 LNG 냉열을 이용하여 고순도의 액체 $CO_2$로 액화시키므로서 $CO_2$의 회수, 처리문제를 해결하는 방식을 소개하고자 한다. 이러한 방식은 천연가스에서 발생되는 $CO_2$ 회수를 LNG 냉열을 활용하므로서 폐열을 활용하는 에너지 효율적인 문제와 사용가능한 고순도 $CO_2$로 회수하므로서 환경적인 문제를 처리하는 기술이라 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.