• Title/Summary/Keyword: 이산화탄소 전환

Search Result 229, Processing Time 0.024 seconds

Exploring Small Group Argumentation Shown in Designing an Experiment: Focusing on Students' Epistemic Goals and Epistemic Considerations for Activities (실험 설계에서 나타난 소집단 논변활동 탐색: 활동에 대한 인식적 목표와 인식적 이해를 중심으로)

  • Kwon, Ji-suk;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The purpose of this study is to explore students' epistemic goals and considerations in designing an experiment task and to investigate how a shift in the students' epistemology affected their argumentation. Four 7th grade students were selected as a focus group. According to the results, when they designed their own experiment, their epistemic goal was 'scientific sense-making' and their epistemic considerations - the perception of the nature of the knowledge product was 'this experiment should explain how something happened', the perception of the justification was 'we need to use our interpretation of the data' and the perception of the audience was 'constructor' - contributed to designing their experiment actively. When students tried to select one argument, their epistemic goal shifted to 'winning a debate', showing 'my experiment is better than the others' with the perception of the audience, 'competitor'. Consequently, students only deprecated the limits of different experiment so that they did not explore the meaning of each experiment design deeply. Eventually, student A's experiment design was selected due to time restrictions. When they elaborated upon their result, their epistemic goal shifted to 'scientific sensemaking', reviewing 'how this experiment design is scientifically valid' through scientific justification - we need justification to make members accept it - acting as 'cooperator'. Consequently, all members engaged in a productive argumentation that led to the development of the group result. This study lays the foundation for future work on understanding students' epistemic goals and considerations to prompt productive argumentation in science classrooms.

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.

Enhancement of Fermentative Hydrogen Production by Gas Sparging (기체 sparging에 의한 수소 발효의 효율 향상)

  • Kim, Dong-Hoon;Han, Sun-Kee;Kim, Sang-Hyoun;Bae, Byung-Uk;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • The effect of gas sparging on continuous fermentative $H_2$ production was investigated using external gases ($N_2$, $CO_2$) with various flow rates (100, 200, 300, 400 ml/min). Gas sparging showed a higher $H_2$ yield than no sparging, indicating that the decrease of $H_2$ partial pressure by gas sparging had a good effect on $H_2$ fermentation. Especially, $CO_2$ sparging was more effective in the reactor performance than $N_2$ sparging. The composition of butyrate, the main metabolic product of $H_2$ fermentation by Clostridium sp., was much higher in $CO_2$ sparging. $H_2$ production increased with increasing flow rate only in $CO_2$ sparging. The best performance was obtained by $CO_2$ sparging at 300 ml/min, resulting in the highest $H_2$ yield of 1.65 mol $H_2/mol$ hexoseconsumed and the maximum $H_2$ production of 6.77 L $H_2/g$ VSS/day. Compared to $N_2$ sparging, there could be another beneficial effect in $CO_2$ sparging apart from lowering down the $H_2$ partial pressure. High partial pressure of $CO_2$ had little effect on $H_2$ producing bacteria but inhibitory effect on other microorganisms like lactic acid bacteria and acetogens which were competitive with $H_2$ producing bacteria.

  • PDF

Acclimatization of in vitro Plantlets of Wasabia japonica(Miq.) Matsum. Derived from the Apical Meristem Culture (고추냉이(Wasabia japonica (Miq.) Matsum.)의 정단분열조직유래 기내묘의 순화)

  • 은종선
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.257-261
    • /
    • 1998
  • The repeated subcultures of in vitro plant materials in wasabi became highly vitrified and the capacity for multiple shoot formation from the vitrified plant materials was very low. In order to improve the quality of in vitro propagated planting materials, the experiments were carried out using culture vessels capped with membrane filter(MF). When vitrified shoots were cultured on MS medium with 0.2mg/L BA in the vessels with MF or without MF for 60 days, the shoots in the vessels with MF did not vitrified. In contrast, the shoots grown in the vessels without MF vitrified at 65%. The stomates of vitrified leaves were circular and inflated, whereas those of normal leaves acclimatizated in the vessels with MF were ovate in shape. The hardened shoots were also cultured on MS media without sucrose containing 0.01mg/L IBA in vessels with(photoautotrophic culture) or without(control) MF. Sucrose was necessary for survival of the in vitro plantlets in the vessels without MF. After 20 days of culture, the shoots in the vessels without MF on the sucrose-free media turned yellow and died. But the shoots in the vessels with MF in the sucrose-free media produced a lot of roots. When shoots were cultured on MS medium with 2% sucrose containing 0.01mg/L IBA in the vessels with(photomixotrophic culture) or without(heterotrophic culture) MF, best growth occured in photomixotrophic culture.

  • PDF

Characteristics of Wheat Germ Oil during Enzymatic Ethanolysis in Supercritical Carbon Dioxide (초임계 이산화탄소에서 밀배아유의 효소적 에탄올화 반응 특성)

  • Back, Sung-Sin;Kwon, Kyung-Tae;Jung, Go-Woon;Ahn, Hyaung-Min;Sim, Jeong-Eun;Kang, Hee-Moon;Chun, Byung-Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.546-552
    • /
    • 2009
  • Enzymatic ethanolysis of wheat germ oil with immobilized lipase was investigated for enhancing the function of wheat germ oil. Ethanolysis reactions were carried out in two different systems; non-pressurized and pressurized system. In non-pressurized system, the enzymatic ethanolysis was carried out in an erlenmeyer flask(25 ml) containing a mixture of wheat germ oil and 99.90% ethanol using 1~5 wt% immobilized lipase as Lipozyme TL-IM and Lipozyme RM-IM and the reaction mixtures were incubated at $40{\sim}70^{\circ}C$ with 120 rpm shaking. In pressurized system, the enzymatic ethanolysis was carried out at various condition; immobilized lipase concentration(2 wt%), reaction time(24 h), reaction temperature($40{\sim}60^{\circ}C$) and reaction pressure(75, 100, 150, 200 bars). The samples obtained from each fraction were analyzed by HPLC for analysing contents of monoglyceride, diglyceride, and triglyceride. The conversion of wheat germ oil relied on the reaction temperature and the concentration of immobilized lipase. The optimum condition of enzymatic ethanolysis in non-pressurized and pressurized systems was at $50^{\circ}C$ and 100 bar.

Development of a compact fuel processor for building fuel cells (건물용 연료전지를 위한 컴팩트 연료개질기 개발)

  • Jung, Un Ho;Koo, Kee Young;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.224.2-224.2
    • /
    • 2010
  • 연료개질기는 연료전지 시스템의 핵심 구성요소 중의 하나로 도시가스로부터 수소를 생산하는 역할을 담당한다. 연료개질기는 주로 탈황, 수증기 개질, 수성가스 전이, 선택적 산화 반응의 4단계로 구성되어 있으며 이 중 상온 탈황부분을 제외한 나머지 부분은 일체화 설계를 통해 제작된다. 탈황의 경우 도시가스에 포함된 부취제인 황화합물를 제거하여 후단에 위치한 촉매층이 황에 의해 피독되는 것을 막는 역할을 하며 주로 상온흡착식 탈황제를 사용한다. 황이 제거된 도시가스는 물과 함께 연료개질기로 도입되어 수증기 개질반응을 통하여 수소, 일산화탄소, 이산화탄소 및 소량의 메탄과 미반응 수증기로 구성된 개질가스로 전환된다. 이후의 수성가스 전이반응에서는 일산화탄소가 물과 반응하여 수소 생산량을 늘리며 동시에 일산화탄소의 농도를 낮추게 된다. 또한 고분자 전해질 연료전지에 공급되는 개질가스는 선택적 산화반응을 통하여 일산화탄소의 농도를 10ppm이하로 유지하게 된다. 이러한 기능의 연료개질기 개발의 주요 이슈로는 컴팩트화 및 고효율화이며 이 두가지 요소를 고려하여 연료개질기를 설계하여야 한다. 연료전지 시스템의 전체부피를 줄이기 위한 노력의 일환으로 연료개질기의 컴팩트화가 요구되는데 가정용 연료전지 기술 선진국인 일본 제품의 경우 $1Nm^3/h$급 연료개질기의 부피는 20L정도로 알려져 있다. 또한 연료전지 시스템의 효율은 연료개질기의 개질효율과 연료전지 스택의 발전효율의 곱으로 계산되기 때문에 연료개질기의 연료개질 효율은 전체 시스템의 효율에 직접적으로 영향을 미치게 된다. 한국에너지기술연구원에서는 수소생산량 기준 $1Nm^3/h$급 연료개질기의 개발을 완료하였으며 크기 및 효율면에서 선진국 제품과 비교하여 동등 또는 우위의 수준을 달성하였다. 연료개질기 내부의 혼합 및 분배 구조를 개선하고 각 촉매층의 최적 배치를 통해 연료개질기의 부피를 최소화 하였으며 연료개질기 내부에서 고온부위와 저온부위 사이의 최적 열교환을 통해 열효율을 극대화 시켰다. 현재 개발된 $1Nm^3/h$급 개질기의 단열 후 부피는 13.5L 그리고 단독운전 시 열효율은 80%(LHV)로 측정되었다. 또한 $1Nm^3/h$급의 연료개질기의 스케일-업 설계를 통하여 수소생산량 3, $5Nm^3/h$ 규모의 연료개질기를 개발하였으며 성능평가가 진행 중이다.

  • PDF

Assessment of GHG Emission Reduction Potential in Extension of Nuclear and Renewable Energy Electricity Generation (원자력과 신재생에너지 발전설비 확대에 따른 온실가스 저감 잠재량에 관한 연구)

  • Jun, Soo-Young;Park, Sang-Won;Song, Ho-Jun;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.191-202
    • /
    • 2009
  • South Korea, ranks 10th largest emitter of carbon dioxide in the world, will probably be under the obligation to reduce GHG emission from 2013. It is very important to reduce the electrical energy consumption since 30% of GHG emission in South Korea is made during electricity generation. In this study, based on "the 1st national energy master plan", the GHG emission reduction potential and the feasibility of the scenario in the electricity generation have been analyzed using LEAP(Long-range Energy Alternative Planning system). The scenario of the mater plan contains the 41% expansion of nuclear power plant facilities and the 11% diffusion of renewable energy until 2030. In result, total $CO_2$ emission reduction rate is 28.8% in 2030. Also $CO_2$ emission of unit electricity generation of bituminous coal power plant is $0.85kgCO_2/kWh$ and its LNG power plant is $0.51kgCO_2/kWh$ in BAU scenario. Therefore when existing facilities is exchanged for nuclear or renewable energy power plant, substitute of bituminous power plant is more effective than LNG power.

Global Trends of Bioethanol Science Information (바이오에탄올 학술정보 분석)

  • Kil, Sang-Cheol;Kim, Sang-Woo;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.589-597
    • /
    • 2012
  • Recently, an understanding of new sources of liquid hydrocarbons such as bioethanol is economically very important. Bioethanol is actually ethyl alcohol or also referred to as ethanol, identical to drinking alcohol by its composition. There are mainly two ways of producing ethanol, namely by synthesis of hydrocarbons and from biomass. Only the second approach deserves the terminology 'bioethanol'. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bioethanol. The world population is expected to grow past 8 billion by 2030 which are almost 60% in Asia Pacific. History has shown that energy use rises much faster than population expands. World wide demand for energy will increase significantly during the next 15 years driven by population growth and the transition of emerging markets into the global economy. In developing nations, a smaller increment in GDP per capita yields a higher increment in energy consumption compared to developed countries. In this study, we analised total 2,454 dissertations for the bioethanol during the 2001~2012 periods by the programs of 'web of science' and 'recently developped program by Korea Institute of Science Technology Information'.

Possibility of aerobic stabilization technology for reducing greenhouse gas emissions from landfills in Korea (국내 폐기물매립지 온실가스 감축을 위한 호기성 안정화 공법의 적용 가능성)

  • Ban, Jong-Ki;Park, Jin-Kyu;Kim, Kyung;Yoon, Seok-Pyo;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.40-51
    • /
    • 2015
  • This study is to estimate the viability of aerobic stabilization technology for reducing greenhouse gas (GHG) emissions from landfills in Korea. In this study, methane emissions were estimated by applying Landfill gas estimation model (LandGEM) to Y landfill in Korea. By comparison of an anaerobic condition (baseline) and an aerobic condition, the amount of $CO_2eq$ savings was calculated. The $CO_2eq$ savings take place inside the landfilled waste during aeration due to the conversion of previously anaerobic biodegradation to aerobic processes, releasing mainly $CO_2$. It was demonstrated that 86.6% of the total GHG emissions occurring under anaerobic conditions could be reduced by aerobic stabilization technology. This means the aerobic stabilization technology could reduce environmental contamination through early stabilization and GHG emissions considerably at the same time. Therefore, the aerobic stabilization technology is one of the optimal technologies that could be employed to domestic landfill sites to achieve sustainable landfill.

Breeding and characteristics of a low-temperature variety oak mushroom (Lentinula edodes) 'Sanjo 708 ho' (표고 중온성 품종 '산조708호' 육성 및 특성)

  • Noh, Jong-Hyun;Kim, In-Yeop;Lee, Won-Ho;Kim, Seon-Cheol;Choi, Sun-Gyu;Ko, Han-Gyu;Park, Heung-Soo;Koo, Chang-Duk
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.207-210
    • /
    • 2016
  • In 2010, a new variety for sawdust cultivation,was produced by monokaryotic-monokaryotic crossing between Sanjo 701ho and FMRI0995. The optimum temperature for Sanjo 708ho mycelial growth was $25^{\circ}C$; mycelial growth on potato dextrose agar was 51.6 mm over 7 days. The fruiting pattern was sporadic, and the optimal temperature range for fruiting was $5{\sim}20^{\circ}C$. Regarding fruiting body characteristics, the pileus was 65.8 mm in size, 16.1 mm in thickness, and hemispherical in shape. The stipe was 42.6 mm in and 19.6 mm in thickness. Mproductivity was good during thelow-temperature period from autumn to spring, with an average productivity of 310.7 g/bag.