• Title/Summary/Keyword: 이산화탄소 가스화

Search Result 330, Processing Time 0.029 seconds

Influence of Applied Voltage for Bioelectrochemical Anaerobic Digestion of Sewage Sludge (하수슬러지의 생물전기화학 혐기성소화에 대한 인가전압의 영향)

  • Kim, Dong-Hyun;Song, Young-Chae;Qing, Feng
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.542-549
    • /
    • 2015
  • The bioelectrochemical anaerobic digestion for sewage sludge was attempted at different applied voltages ranged from 0.2 V to 0.4 V. At 0.3 V of the applied voltage, pH and VFAs were at 7.32 and 760 mg COD/L, respectively, which were quite stable. The methane production rate was $1.32L\;CH_4/L.d$, and the methane content in biogas was 73.8%, indicating that the performance of the bioelectrochemical anaerobic digestion could be considerably improved by applying a low voltage. At 0.4 V of the applied voltage, however, the contents of the minor VFA components including formic acid and propionic acid were increased. The methane production rate was reduced to $1.24L\;CH_4/L.d$ and the biogas methane content was also reduced to 72.4%. At 0.2 V of the applied voltage, the pH was decreased to 6.3, and VFAs was accumulated to 5,684 mg COD/L. The contents of propionic acid and butyric acid in the VFAs were considerably increased, The performances in terms of the methane production rate and the biogas methane content were deteriorated. The poor performance of the bioelectrochemical reactor at 0.2 V of the applied voltage was ascribed to the thermodynamic potential lack for the driving of the carbon dioxide reduction into methane at cathode.

Effects of Multi-stage Pilot Split Injection Strategy on Combustion and Emission Characteristics in a Single-Cylinder Diesel Engine (단기통 디젤엔진에서 다단 파일럿 분할 분사 전략이 연소 및 배기가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.692-698
    • /
    • 2020
  • This paper examines the effects of a multi-stage pilot split injection strategy on combustion and exhaust emission factors in a single-cylinder diesel engine. One analysis noted that in the single-injection condition, the maximum in-cylinder pressure and rate of heat release were highest. The pilot injection quantity was evenly divided, showing a tendency to decrease as the number of injections increased. In another injection condition, when the multi-stage pilot split injection strategy was applied, IMEP, engine torque, and combustion increased. The COVIMEP was greatest with the lowest combustion efficiency. The combustion ability was poor. In a single injection condition, the O2 concentration in the exhaust gas was the lowest and the CO2 was the highest. When the multi-stage split injection strategy was applied, the low temperature combustion process proceeded, and the oxidation rate of CO2 decreased while the emission level increased. In a single injection condition in which a locally rich mixture was formed, the HC emission level showed the highest results. A 55.6% reduction of NOx emission occurred under a three-stage pilot injection condition while conducting a multi-stage pilot split injection strategy.

A Study on the Biogasification of Municipal and Industrial Wastewater Sludge (도시 하수 및 공장 폐수 슬러지의 바이오가스화에 관한 연구)

  • Kim, Jahyun;Kim, Seogku;Hwang, Injoo;Ahn, Jaehwan;Kang, Sungwon;Lee, Wontae;Lim, Junhyuk;Lee, Jeakun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.5-12
    • /
    • 2014
  • Anaerobic digestion was investigated for the stabilization of sludge, decrease of volatile solids, production of biogas for wastewater sludge. In this study, total solids and volatile solids, elemental analysis were conducted to determine characteristics of various types of sludges and investigate the feasibility of biogas production of Municipal Wastewater Sludge (MWS), Industrial Wastewater Sludge (IWS), mixed sludge (Mix), and Municipal Wastewater Sludg Cake (MWSC). Total solids, volatile solids, and C/N ratio were determined in the range of 11.2~20.6 %, 62.1~83.1 % of TS and 4.96~8.33 %. Using the biochemical methane potential (BMP test), mixed sludge and wastewater sludge finished the methane production within approximately 20 day and 16~17 day. Sludge cake finished within 10 day. Mixed sludge produced 395.5 mL $CH_4$ per g of Volatile Solid (VS) and resulted in the highest methane production. For carbon dioxide production, five sludges had similar value of accumulated carbon dioxide production except for sludge cake.

A Study of the Combination Method for Earthwork Equipments Using the Environmental Loads and Costs (토공사 환경오염물질 부하량 및 공사비를 이용한 장비조합방법 연구)

  • Kang, Min-Ho;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1215-1224
    • /
    • 2013
  • Great efforts have been made worldwide to reduce the Green House Gas (GHG) emission following the "Kyoto Protocol" declared during the United Nations Framework Convention on Climate Change in 1997. Many industries have restructured to meet the standard set by the Protocol. However, no clear guidance has been established for the purpose of reducing the GHG emission in construction industry. In addition, no significant effort has been made to conserve the energy during construction activities. For more effective energy saving in construction industry, it is essential to collect data about energy consumption, quantity of environmental emissions and costs. However, most studies on sustainable construction have been concentrated on the use of equipment, maintenance and repair works during construction due to the difficulties of collecting such data. This study suggests a method to select the most environmentally friendly equipment combination for earthwork with comparing environmental loads and costs using the database of Life Cycle Inventory in the Ministry of Knowledge Economy and Ministry of Environment of Korea.

A suggestion on the incentive and penalty based on carbon tax scheme through EEOI results (EEOI 결과에 따른 탄소세 기반 격려금과 벌과금 부과 방안 제시)

  • Park, Go-Ryong;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.323-329
    • /
    • 2017
  • Nowadays, considering global warming and enhanced prohibition to discharge pollutants at sea, all of existing operation-ships must lead to the reduction of fuel consumption. International standards of International Maritime Organization and EU rules governing harbor pollutants are being strengthened. Therefore, ship-owners and operators are seeking ways to reduce $CO_2$, SOx, and NOx emissions. Although world trade continues to expand, total fuel usage for sea transport tends to diminish. However, ICS(International Chamber of Shipping) has set a goal of reducing $CO_2$ emissions from shipping by 50% until 2050. In addition, with respect to the Paris Climate Change Accord in 2015, IMO proposes to set up a reduction target of GHG emission from existing operation-ships. For setting up a reduction target of GHG from international maritime transport, "A data collection system for fuel consumption" will be introduced in the near future. In order to effectively reduce the use of fuel in a ship in accordance with the trend of compulsory fuel saving from operation ships, this paper suggested adoption of an Incentive-Penalty scheme based on Emission-Trading-Scheme, Carbon Tax, and basic calculation formula after verifying the EEOI level for a year.

Biogas Production from Sewage Sludge in 30L Microbial Electrolysis Cell (30L 미생물전기분해전지의 하수슬러지로부터 바이오가스 생산 특성)

  • Lee, Myoung-Eun;Ahn, Yongtae;Shin, Seung Gu;Seo, Sun-Chul;Chung, Jae Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.25-33
    • /
    • 2019
  • Operating characteristics of a 30 L microbial electrolysis cell (MEC) for producing biogas from sewage sludge was studied. During the 32-day inoculation period, carbon dioxide concentration decreased and methane concentration increased with operating time, and the overall methane content of biogas was 69.1% with a production rate of 171.6 mL CH4/L·d. In fed-batch experiments for 6 operating cycles, CH4 concentration of 66.5~77.2% was obtained at a production rate of 184.9~372.9 mL CH4/L·d, COD, TS and VS removal efficiency ranged from 28.2 to 42.1%, 20.7 to 37.5% and 18.5 to 36.9%, respectively. The MEC system was observed to be stabilized as operating cycles were repeated after inoculation. In the last operating cycle, 5221 mL/L of methane was produced with CH4 yield of 316.7 L CH4/kg CODrem, and the energy recovery was 73%.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks I - Classification of Fluorescence Spectra using Self-Organizing Maps - (인공신경망에 의한 생물공정에서 2차원 형광스펙트럼의 분석 I - 자기조직화망에 의한 형광스펙트럼의 분류 -)

  • Lee Kum-Il;Yim Yong-Sik;Kim Chun-Kwang;Lee Seung-Hyun;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.291-298
    • /
    • 2005
  • Two-dimensional (2D) spectrofluorometer is often used to monitor various fermentation processes. The change in fluorescence intensities resulting from various combinations of excitation and emission wavelengths is investigated by using a spectra subtraction technique. But it has a limited capacity to classify the entire fluorescence spectra gathered during fermentations and to extract some useful information from the data. This study shows that the self-organizing map (SOM) is a useful and interpretative method for classification of the entire gamut of fluorescence spectral data and selection of some combinations of excitation and emission wavelengths, which have useful fluorometric information. Some results such as normalized weights and variances indicate that the SOM network is capable of interpreting the fermentation processes of S. cerevisiae and recombinant E. coli monitored by a 2D spectrofluorometer.

The Kinetics Study of Ozone with Sulfur Dioxide in the Gas Phase (기체 상태에서의 오존과 아황산가스의 반응연구)

  • Young Sik Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.111-118
    • /
    • 1991
  • The kinetic of the gas phase reactions of ozone(0.5 torr) with sulfur dioxide was studied. The SO2 reaction was conducted in the 7∼22 torr range at 90∼155$^{\circ}$C. The reaction rate was faster than the reaction rate of O$_3$ in the presence of CO$_2$ alone. The reaction of O$_3$ with SO$_2$ follows the rate law: -d(O$_3)/dt=k_0(SO_2)(M)(O_3)+2k _1(SO_2)(O_3$). The first term of this rate law arises from a third order molecular reaction predominating in the lower temperature range and gave a rate constant k$_0$ = (9.35 $\pm$ 8.6) ${\times}$ 10$^9$e$^{-(11.05{\pm}2.04)kcal/RT}(M^{-2}s^{-1}$). The second term of the above rate law derived from a second order thermal decomposition reaction which was the major part of the reaction and gave a rate constant k$_0 =(9.35{\pm}8.6){\times}10^9e^{-(11.05{\pm}2.04)kcal/RT}(M^{-2}s^{-1}$). The overall reaction proceeds with kinetics of complex order composed mainly of second order and third order components.

  • PDF

The Prospect of Methanol and Its Meaning (메탄올의 전망(展望)과 그 의미(意味))

  • Uhm, Sung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • In this energy and environment conscious age, methanol has come to attention increasingly since the well established process is commercially available to produce methanol from abundant low grade carbonaceous resources ; methane, carbon dioxide, coal and biomass etc. Methanol is a Clean energy source which is a readily storable and transportable liquid. It is elaborated to correlate power generation, city gas and chemical feed stocks including transportation fuel, enhancing the national efficiency of resource utilization as well as reducing the environmental problems for the future via C1 technology. It is emphasized that $CO_2$ could be used to produce methanol as a mean of hydrogen storage as in the nature, which will alleviate the environmental problem such as green house effect.

  • PDF

Chlorella as a Functional Biomaterial (기능성 생물 소재로서의 클로렐라)

  • 채희정;강민숙;심상준
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Chlorella contains a rich source of biochemical products with applications in the feed, food, nutritional, cosmetic, pharmaceutical and even fuels industries. Chlorella is one of unicellular green algae and is mostly grown in fresh water such as pond and lake. It grows in a manner of nonsexual reproduction so that it multiplies 4~16 times overnight. Large-scale culture is conducted by open pond culture or pure culture using fermenter. Chlorella has various efficacies such as heavy metal removal, degradation of toxic materials, control of arteriosclerosis, immunoprotective effects, anticancer activity and growth-stimulating activity of intestinal bacteria. Chlorella can be used as a taste enhancer and foodstuff, as it has a plenty of essential amino acids, polyunsaturated fatty acids, sterols and chlorella growth factor (CGF). Chlorella is a potential organism which can be utilized for CO$_2$ removal and H$_2$ Production in environmental area and energy Production.