• Title/Summary/Keyword: 이미지 향상

Search Result 1,784, Processing Time 0.022 seconds

Cancer Histopathological Image Classification based on Convolutional Neural Network (CNN 기반 암세포 현미경 이미지 분류)

  • Kim, Shin;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.46-48
    • /
    • 2018
  • 최근 수 년간 뉴럴 네트워크 기반 이미지 분류 기법의 성능이 눈에 띄게 향상되었다. 특히 CNN 은 딥 러닝기법을 도입하면서 이미지 분류 정확도가 향상되었으며, 이는 의학 분야 등 다른 분야에도 영향을 주게 되었다. 의학용 이미지의 분류 시스템의 경우, 오분류가 치명적인 결과를 초래할 수 있기 때문에 높은 정확도의 이미지 분류 시스템을 필요로 하게 된다. 본 논문에서는 CNN 기반 암세포 현미경 이미지 분류 기법에 대해 제안한다. 사전에 훈련된 뉴럴 네트워크의 가중치의 일부를 다시 계산하고, 재계산을 통해 얻은 가중치를 기반으로 암세포 현미경 이미지를 분류하며, 분류결과 높은 정확도로 이미지를 분류하는 것을 확인할 수 있다.

  • PDF

An Enhancement of the Encoding Speed and a Compensation of Decoded Video Quality for H.263 Codec (H.263 압축 속도 향상과 영상 복원용 화질 보상 연구)

  • Yun, Seong-Gyu;Gang, Ui-Seon;Yu, Hwan-Jong;Im, Yeong-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.402-411
    • /
    • 2001
  • H.263 압축 방식은 실현하는데 여러 가지 문제가 있지만 그 중에서 그 대표적인 것은 인코딩 과정에서의 압축 시간이 오래 걸린다는 것이고 다른 한 가지는 과도한 압축률에 의한 복원된 이미지 화질 저하이다. 이 논문에서는 H.263에서의 압축 속도 향상과 복원 이미지의 화질 이미지의 화질 보상에 대한 두 가지 새로운 방법을 제안하였다. 압축 속도를 향상시키기 위해서 움직임 벡터를 찾는 알고리즘을 개선하여 새로운 4단계 탐색 알고리즘을 제안하였다. 또한 화질을 보상하기 위해 디코더에서 블록 아티팩을 제거하고 복원 이미지를 선명하게 하는 알고리즘을 제안하였다. 여기서 화질 보상은 원본 이미지와 동일하게 만드는 것이 아니라 인간이 더 좋은 영상으로 인식하도록 하는 걸 목적으로 한다. 우리가 제한한 알고리즘에 의해서 압축 속도는 초당 2.5에서 17 프레임으로 증가하였고 블록 아티팩을 제거하고 명암 대비를 높임으로써 보기 좋은 영상을 제공하였다.

  • PDF

Preprocessing Algorithm for Enhancement of Fingerprint Identification (지문이미지 인증률 향상을 위한 전처리 알고리즘)

  • Jung, Seung-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • This paper proposes new preprocessing algorithm to extract minutiae in the process of fingerprint recognition. Fingerprint images quality enhancement is a topic phase to ensure good performance in a topic phase to ensure good performance in a Automatic Fingerprint Identification System(AFIS) based on minutiae matching. This paper proposes an algorithm to improve fingerprint image preprocessing to extract minutiae accurately based on directional filter. We improved the suitability of low quality fingerprint images to better suit fingerprint recognition by using valid ridge vector and ridge probability of fingerprint images. With the proposed fingerprint improvement algorithm, noise is removed and presumed ridges are more clearly ascertained. The algorithm is based on five step: computation of effective ridge vector, computation of ridge probability, noise reduction, ridge emphasis, and orientation compensation and frequency estimation. The performance of the proposed approach has been evaluated on two set of images: the first one is self collected using a capacitive semiconductor sensor and second one is DB3 database from Fingerprint Verification Competition (FVC).

Thermal Image Processing and Synthesis Technique Using Faster-RCNN (Faster-RCNN을 이용한 열화상 이미지 처리 및 합성 기법)

  • Shin, Ki-Chul;Lee, Jun-Su;Kim, Ju-Sik;Kim, Ju-Hyung;Kwon, Jang-woo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.30-38
    • /
    • 2021
  • In this paper, we propose a method for extracting thermal data from thermal image and improving detection of heating equipment using the data. The main goal is to read the data in bytes from the thermal image file to extract the thermal data and the real image, and to apply the composite image obtained by synthesizing the image and data to the deep learning model to improve the detection accuracy of the heating facility. Data of KHNP was used for evaluation data, and Faster-RCNN is used as a learning model to compare and evaluate deep learning detection performance according to each data group. The proposed method improved on average by 0.17 compared to the existing method in average precision evaluation.As a result, this study attempted to combine national data-based thermal image data and deep learning detection to improve effective data utilization.

The Study on the Minutiae Extract of Stain Fingerprint for Improve Fingerprint Recognition system (지문인식 시스템의 성능 개선을 위한 손상된 지문의 특이점 추출에 관한 연구)

  • 김용식;조범준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.236-239
    • /
    • 2003
  • 본 논문에서는 많은 잡음으로 인해 손상된 지문으로부터 향상된 특이점 추출에 관한 방법을 제안한다. 최근 들어 주민등록증 뒷면의 지문 이미지와 본인의 생체 지문을 비교하여 본인임을 판단하는 시스템에 관한 연구가 활발하게 진행되어지고 있다. 그런데 생체지문 인식 장치를 통해 입력받은 지문 이미지는 왜곡과 잡음이 없는데 반해 주민등륵증상의 지문이미지는 입력 당시 잉크를 통해 회전날인 방식으로 입력받아 잡음과 왜곡이 심하여 두 이미지간의 인증율이 좋지 않다. 이에 주민등록증의 지문 이미지에 대한 잡음과 왜곡보정 필터링과 오류 특이점 제거 등을 통하여 향상된 지문인식 시스템을 구성할 수 있는 방법을 제안한다.

  • PDF

FPGA implementation of high temperature feature points extraction algorithm for thermal image (열화상 이미지에 대한 고온 특징점 추출 알고리즘의 FPGA 구현)

  • Ko, Byoung-Hwan;Kim, Hi-Seok
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.578-584
    • /
    • 2018
  • Image segmentation has been presented in the various method in image interpretation and recognition, and the image is using separate the characteristics of the specific purpose. In this paper, we proposed an algorithm that separate image for feature points detected to high temperature in a Thermal infrared image. In order to improve the processing time, the proposed algorithm is implemented to FPGA Hardware Block using the Zynq-7000 Evaluation Board environment. The proposed High-Temperature Detection Algorithm and total FPGA blocks show a decrease of a processing time result from 16ms to 0.001ms, and from 50ms to 0.322ms respectively. It is also verified similar results of the PSNR to comparing software thermal testbench and hardware ones.

Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders (심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법)

  • K. Dilusha Malintha De Silva;Hyo Jong Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.243-252
    • /
    • 2023
  • Satellite imageries are at a greatest importance for land cover examining. Numerous studies have been conducted with satellite images and uses semantic segmentation techniques to extract information which has higher altitude viewpoint. The device which is taking these images must employee wireless communication links to send them to receiving ground stations. Wireless communications from a satellite are inevitably affected due to transmission errors. Evidently images which are being transmitted are distorted because of the information loss. Current semantic segmentation techniques are not made for segmenting distorted images. Traditional image enhancement methods have their own limitations when they are used for satellite images enhancement. This paper proposes an auto-encoder based image pre-enhancing method for satellite images. As a distorted satellite images dataset, images received from a real radio transmitter were used. Training process of the proposed auto-encoder was done by letting it learn to produce a proper approximation of the source image which was sent by the image transmitter. Unlike traditional image enhancing methods, the proposed method was able to provide more applicable image to a segmentation model. Results showed that by using the proposed pre-enhancing technique, segmentation results have been greatly improved. Enhancements made to the aerial images are contributed the correct assessment of land resources.

Blind Super-Resolution Kernel estimation using two images (두 장의 이미지를 활용한 이미지 화질 저하 커널 예측)

  • Cho, Sunwoo;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.303-306
    • /
    • 2021
  • 이미지 초해상도는 영상 취득 과정에서 센서와 렌즈의 물리적인 한계 등으로 인하여 의해 화질이 저하된 이미지를 더 높은 배율로 복원하는 문제이다. 이미지 초해상도는 딥러닝을 통해 놀라운 성능향상을 이루었지만, 카메라로 촬영된 실제 이미지에서는 좋은 성능을 내지 못하였다. 이는 딥러닝에서는 'bicubic' 커널로 down-sampling된 합성 이미지 데이터를 사용하였던 것과 달리 실제 이미지에서는 'bicubic' 커널을 통한 화질 저하와는 다른 화질 저하, 즉 다른 커널을 통한 화질 저하가 발생하기 때문이다. 따라서 실제 이미지에 대한 성능을 높이기 위해서는 이에 대한 정확한 커널 예측이 필요하다. 최근 주목받기 시작한 이미지 초해상도를 위한 커널 예측은 초해상도를 잘 시켜주는 커널을 직접 찾는 방법[10, 13]과 이미지의 분포와 커널을 통해 다운샘플된 이미지에 대한 분포를 일치시켜주면서 커널을 예측하는 방법[14]으로 나누어져 있다. 그러나 두 방법 모두 ill-posed problem 인 커널 예측 문제를 한 장의 이미지만으로 해결하려는 것이기 때문에 정확한 예측에는 어려움이 발생한다. 따라서 본 논문에서는 두 장의 이미지를 활용한 이미지 화질 저하 커널 예측 방법을 제안한다. 제안된 방법은 두 장의 이미지가 같은 카메라를 통해 촬영되었으며 이때 이미지 화질 저하는 카메라에 의해서만 영향을 받는다는 가정을 기반으로 한다. 즉, 두 장의 이미지는 같은 커널을 통해 저하된 이미지라는 가정을 한다. 제안된 방법은 [14]에서처럼 이미지 분포를 기반으로 한 커널 예측을 진행하며, 이미지 초해상도를 진행하고자 하는 이미지 외에 참고 이미지 또한 같은 커널에서 화질 저하를 시켰을 때 본래의 이미지와 같은 분포에 있도록 학습을 진행한다. 결과적으로 본 논문에서는 두 장의 이미지를 사용하였을 때 더욱 정확하게 커널을 찾을 수 있음을 보여준다. 두 장의 이미지를 활용하는 방식이 한 장의 이미지만을 활용하는 기존의 최고 수준의 방법에 비해 합성된 다양한 커널 데이터셋[14]에서 약 0.17dB 성능 향상이 있었다.

  • PDF

A Study on Improvement of Image Classification Accuracy Using Image-Text Pairs (이미지-텍스트 쌍을 활용한 이미지 분류 정확도 향상에 관한 연구)

  • Mi-Hui Kim;Ju-Hyeok Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.561-566
    • /
    • 2023
  • With the development of deep learning, it is possible to solve various computer non-specialized problems such as image processing. However, most image processing methods use only the visual information of the image to process the image. Text data such as descriptions and annotations related to images may provide additional tactile and visual information that is difficult to obtain from the image itself. In this paper, we intend to improve image classification accuracy through a deep learning model that analyzes images and texts using image-text pairs. The proposed model showed an approximately 11% classification accuracy improvement over the deep learning model using only image information.

Image Sharpening Algorithm Using Morphological Operations (모폴로지 기법을 이용한 이미지 샤프닝 알고리듬)

  • Noh, Gyumyung;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.200-203
    • /
    • 2019
  • 영상처리 분야에서 이미지 샤프닝 기법은 주관적 화질 향상에 큰 역할을 하고 있다. 본 논문에서는 모폴로지 기법을 이용한 향상된 이미지 샤프닝 알고리듬을 제안한다. 기존의 Sobel이나 Laplacian 연산자는 에지 검출에 있어서 잡음에 취약하다는 단점이 있다. 이를 해결하기 위해 잡음에 상대적으로 민감하지 않은 모폴로지 기법을 이용했다. 우선, 침식 연산을 수행한 이미지와 원본 이미지와의 차를 통해 에지를 얻는다. 이 에지는 원본 이미지의 히스토그램의 표준 편자 값을 기반으로 원본 이미지와 가중합을 통해 에지를 중점적으로 선명하게 만든다. 실험을 통해 제안하는 알고리듬은 기존의 Sobel이나 Laplacian 연산자 보다 우수한 성능을 보임을 알 수 있었다.

  • PDF