Son, Chaeyeon;Kim, Soo Ye;Kim, Hee Kwon;Kim, Munchurl
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.139-143
/
2021
본 논문에서는 꾸준히 연구되어 오던 이미지 복원 문제에서 초해상화와 인페인팅이라는 복합적 이미지 복원을 동시에 처리하는 해결 방법을 제안한다. 초해상화는 국지적 픽셀 정보를 이용하여 고해상도의 영상을 복원하고, 인페인팅은 이미지 전체 정보를 활용하여 영상 내 비어 있는 영역을 생성해야 하므로, 이러한 두 가지 영상 복원 기법을 동시에 수행하는 것은 상당히 어려운 문제이다. 그렇기에 인페인팅과 초해상화는 이미지 복원에서 널리 활용되는 기술인 만큼 동시에 해결할 수 있는 기법에 대한 수요는 있음에도 지금까지 거의 연구되지 않았다. 본 논문은 초해상화 및 인페인팅 합동 처리에 있어 복합적인 정보를 모두 다뤄야하는 네트워크가 서로의 성능을 저하시키지 않도록 개략적 복원 네트워크 (Coarse network), 디테일 복원 네트워크 (Refinement network), 초해상화 네트워크 (SR network)로 분리하여 초해상화 및 인페인팅 합동 처리를 수행하며, 각 단계마다 결과 영상을 얻어 스케일 별 정답 영상과 손실함수를 계산하여 복합적인 성능을 올릴 수 있는 방법을 제시한다. 또한 순차적 단일 모델에 비하여 인페인팅과 초해상화를 합동 학습하는 제안 모델이 개선된 화질의 결과 영상을 획득할 수 있다는 것을 실험적으로 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.77-80
/
2014
멀티미디어 기술의 보급 확산 및 급속한 발전으로 새로운 영상 압축 기술인 HEVC(High Efficiency Video Coding) 고화질 영상 압축 표준을 탄생시켰으며, 사용자 또한 대형 화면에 대한 선호도가 높아지고 있다. 그 결과 기존의 HD급 영상보다 4배 이상, 16배까지 선명한 초고화질 UHD(Ultra High Definition) 영상 서비스가 차세대 방송기술로 새롭게 주목받고 있다. 또한 JPEG 2000 압축도 기존 처리된 $4096{\times}4096$ 픽셀 이미지를 넘어 초고화질 해상도 이미지(8K : $7680{\times}4320$ 혹은 $8192{\times}4320$ 픽셀)를 처리 지원을 하고 있다. 따라서 초고화질 이미지의 획득 및 저장을 위해서는 고속의 처리 기술이 필요하다. 이에 본 논문은 초고화질 해상도 이미지의 고속 처리를 위한 병렬처리 기술에 대해 단계적 연구를 실행하며, 이를 위하여 1차적으로. JPEG 2000의 처리 과정을 살펴보고 전처리 단계인 색공간 변환 알고리즘 적용을 위하여 사용자 정의의 쓰레드 기반 고속처리를 수행하였다. 실험 결과 기존의 처리보다 사용자 정의 기반 쓰레드 고속처리가 초고화질 해상도 이미지(UHD 8K : $7680{\times}4320$)를 기준으로 최대 15배의 성능 향상의 결과를 보여주었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.72-75
/
2022
야외 환경을 카메라로 촬영한 일반 영상에서 텍스트 이미지를 검출하고 인식하는 기술은 로봇 비전, 시각 보조 등의 기반이 되는 기술로 활용될 수 있어 매우 중요한 기술이다. 하지만 저해상도의 텍스트 이미지의 경우 텍스트 이미지에 포함된 노이즈나블러 등이 더 두드러지기 때문에 텍스트 내용을 인식하는 것이 어렵다. 이에 본 논문은 일반 영상에서의 저해상도 한글 및 영어 텍스트에 대한 이미지 초해상화를 통해 텍스트 인식 정확도를 개선하였다. 트랜스포머에 기반한 모델로 한글 및 영어 텍스트에 대한 이미지 초해상화를 수행하였으며, 영어 및 한글 데이터셋에 대해 제안한 초해상화 방법을 적용했을 때 그렇지 않을 때보다 텍스트 인식 성능이 개선되는 것을 확인하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.4
/
pp.543-548
/
2021
The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, the main features of low-resolution image LR are extracted mainly using deep learning super-resolution models. It learns and reconstructs the extracted features, and focuses on reconstruction-based algorithms that generate high-resolution image HR. In this paper, we investigate SRCNN and VDSR in a super-resolution algorithm model based on reconstruction. The structure and algorithm process of the SRCNN and VDSR model are briefly introduced, and the multi-channel and special form are also examined in the improved performance evaluation function, and understand the performance of each algorithm through experiments. In the experiment, an experiment was performed to compare the results of the SRCNN and VDSR models with the peak signal-to-noise ratio and image structure similarity, so that the results can be easily judged.
This paper proposes a method to acquire image data inside tunnel structures and a method to structure the acquired image data. By improving the conditions by which image data are acquired inside the tunnel structure, high-quality image data can be obtained from area type tunnel scanning. To improve the data acquisition conditions, a longitudinal rail of the tunnel can be installed on the tunnel ceiling, and image data of the entire tunnel structure can be acquired by moving the installed rail. This study identified 0.5 mm cracked simulation lines under a distance condition of 20 m at resolutions of 3,840 × 2,160 and 720 × 480 pixels. In addition, the proposed image-data-structuring method could acquire image data in image tile units. Here, the image data of the tunnel can be structured by substituting the application factors (resolution of the acquired image and the tunnel size) into a relationship equation. In an experiment, the image data of a tunnel with a length of 1,000 m and a width of 20 m were obtained with a minimum overlap rate of 0.02% to 8.36% depending on resolution and precision, and the size of the local coordinate system was found to be (14 × 15) to (36 × 34) pixels.
Recently, calligraphy has become popular because people focused on emotion. The strokes, dots, swoops, cracks and shading are the calligraphy factors for expressing various emotions such as joy, anger, sorrow, and delight. However, the emotion which is expressed by cracks and shading can be destroyed in the digital work when the calligraphy is used for a variety sizes of prints. Professionals work with high-resolution images which are obtained through the scanner, however normal users should work with low-resolution images taken with the smart phone for calligraphy image editing. We propose a raster image scaling method focused on calligraphy that maintains the emotion with cracks and shading, when normal users use the low-resolution calligraphy images in the digital work. The method recolors aliasing boundary of enlarged rasterized image. When recolored by our method, our method decreases aliasing by using the image gradient method, vivify calligraphy images, and maintains the emotion in cracks and shading by using the alpha value.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.129-132
/
2022
Super-resolution is the process of converting a low-quality image into a high-quality image. This study was conducted using ESPCN. In a super-resolution deep neural network, different quality images can be output even when receiving the same input data according to the activation function that determines the weight when passing through each node. Therefore, the purpose of this study is to find the most suitable activation function for super-resolution by applying the activation functions ReLU, ELU, and Swish and compare the quality of the output image for the same input images. The CelebaA Dataset was used as the dataset. Images were cut into a square during the pre-processing process then the image quality was lowered. The degraded image was used as the input image and the original image was used for evaluation. As a result, ELU and swish took a long time to train compared to ReLU, which is mainly used for machine learning but showed better performance.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.661-662
/
2021
본 논문에서는 인공신경망 기반의 슈퍼 해상도(Super-resolution, SR) 기법을 이용하여 저해상도(Low-resolution, LR) 헤어 시뮬레이션을 고해상도(High-resolution, HR)로 노이즈 없이 표현할 수 있는 기법을 제안한다. LR과 HR 머리카락 간의 쌍은 헤어 시뮬레이션을 통해 얻을 수 있으며, 이렇게 얻어진 데이터를 이용하여 HR-LR 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 머리카락의 위치를 지오메트리 이미지로 변환하여 사용한다. 우리가 제안하는 헤어 네트워크는 LR 이미지를 HR 이미지로 업스케일링 시키는 이미지 합성기를 위해 사용된다. 테스트 결과로 얻어진 HR 이미지가 HR 머리카락으로 다시 변환되면, 하나의 매핑 함수로 표현하기 어려운 머리카락의 찰랑거리는(Elastic) 움직임을 잘 표현할 수 있다. 합성 결과에 대한 성능으로는 전통적인 물리 기반 시뮬레이션보다 빠른 성능을 보였으며, 복잡한 수치해석을 몰라도 쉽게 실행이 가능하다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.745-747
/
2004
본 논문에서는 여러 해상도로 입력되어지는 얼굴 이미지를 효율적으로 인식시키는 작업을 수행하는 방법에 대한 내용을 소개하고 있다. 정해지지 않은 예측이 불가능한 사람들이 드나드는 공공장소인 공항이나 항만 같은 곳에서의 얼굴인식은 고정된 크기가 아닌 다양한 크기와 조명을 갖는 등, 매우 많은 가지 수의 환경 변수를 가지고 있다. 이러한 환경에서의 얼굴인식은 그만큼 다양한 변수와 그 변수의 조건에 대한 대응을 요구하게 된다. 여기서 제안하는 방법은 다양한 해상도를 갖는 입력 얼굴 이미지에 대하여 최적의 가보 커널과 그에 따르는 적절한 파라미터를 찾는 것으로 효과적인 얼굴인식을 수행하는 방법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2007.05a
/
pp.357-360
/
2007
초해상도 영상 복원은 저해상도 이미지를 고해상도 이미지로 변환하는 기술이다. 저해상도를 고해상도로 변환 시 정보가 없는 화소에 대한 정확한 화소값을 예측하는 보간법을 이용하게 되며 영상의 스케일링에 따른 앨리어싱 (aliasing) 이 발생하는 문제를 해결해야 한다. 본 논문에서는 Sobel 연산자를 통해 구한 에지 성분의 크기와 방향성을 이용하여, 초해상도 영상의 앨리어싱과 블러링(blurring) 을 줄이는 기법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.