• Title/Summary/Keyword: 이미지 학습

Search Result 1,423, Processing Time 0.024 seconds

A Study on Image Creation and Modification Techniques Using Generative Adversarial Neural Networks (생성적 적대 신경망을 활용한 부분 위변조 이미지 생성에 관한 연구)

  • Song, Seong-Heon;Choi, Bong-Jun;Moon, M-Ikyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.291-298
    • /
    • 2022
  • A generative adversarial network (GAN) is a network in which two internal neural networks (generative network and discriminant network) learn while competing with each other. The generator creates an image close to reality, and the delimiter is programmed to better discriminate the image of the constructor. This technology is being used in various ways to create, transform, and restore the entire image X into another image Y. This paper describes a method that can be forged into another object naturally, after extracting only a partial image from the original image. First, a new image is created through the previously trained DCGAN model, after extracting only a partial image from the original image. The original image goes through a process of naturally combining with, after re-styling it to match the texture and size of the original image using the overall style transfer technique. Through this study, the user can naturally add/transform the desired object image to a specific part of the original image, so it can be used as another field of application for creating fake images.

A Comparative Analysis of Deep Learning Frameworks for Image Learning (이미지 학습을 위한 딥러닝 프레임워크 비교분석)

  • jong-min Kim;Dong-Hwi Lee
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.129-133
    • /
    • 2022
  • Deep learning frameworks are still evolving, and there are various frameworks. Typical deep learning frameworks include TensorFlow, PyTorch, and Keras. The Deepram framework utilizes optimization models in image classification through image learning. In this paper, we use the TensorFlow and PyTorch frameworks, which are most widely used in the deep learning image recognition field, to proceed with image learning, and compare and analyze the results derived in this process to know the optimized framework. was made.

Development of A Macular Degeneration Predictive Model Based on Transfer Learning (전이학습 기반 황반변성 진단모델의 개발)

  • Kim, Kyung-Min;Oh, Se-Jong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.43-45
    • /
    • 2022
  • 본 논문은 황반변성 진단 모델 개발을 위해 안저 사진을 이용한 MobileNet2 전이학습 모델 개발과 안정적인 모델 성능을 위한 이미지 증강 방법 및 모델 성능 향상을 위한 파라미터 조정 방법을 제안한다. 보유하고 있는 이미지의 수가 매우 적다고 하더라도 적절한 전이학습 모델을 사용하고 이미지 증강 시 증강 방법과 증강한 이미지와 정상 이미지와의 비율을 적절히 고려할 경우 충분히 안정적인 결과를 얻어낼 수 있다. 또한 파라미터 조정을 통해서 성능 향상을 도모할 수 있다

Understanding Documents With Chemical Structures Using Image Segmentation (영상 분할을 활용한 화학 구조 문서 이해)

  • Yang, Haeyoon;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1297-1300
    • /
    • 2022
  • Document layout analysis는 문서 이미지의 구조와 구성요소를 파악하는 기술이다. 기존 딥러닝을 사용한 학습 기반 방법에는 각 구성 요소를 검출하는 detection 기반 방식이 많으나 이는 다양한 형식의 문서 이미지에 확장될 수 있는 가능성이 낮다는 한계가 존재한다. 특히, 다양한 모양과 크기의 화학 구조를 포함하는 화학 문서 이미지에 적용하기 어렵다. 본 논문에서는 영상분할을 활용하여 화학 구조 문서를 이해하는 연구를 진행하였다. 기존의 블록 단위로 레이블링된 벤치마크와 다르게 객체 단위로 레이블링한 학습 데이터를 가지고 DeepLabv3 구조의 네트워크를 학습하여 화학 문서 이미지를 효과적으로 분할하였다. 객체 단위 레이블링과 영상 분할을 사용한 방식이 문서 이해 및 화학 구조 검출에 준수한 성능을 보이는 것을 확인하였고 이 방식이 다양한 형식의 문서 이미지에 확장될 수 있음을 보였다.

  • PDF

Recent advances in few-shot learning for image domain: a survey (이미지 분석을 위한 퓨샷 학습의 최신 연구동향)

  • Ho-Sik Seok
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.537-547
    • /
    • 2023
  • In many domains, lack of data inhibits adoption of advanced machine learning models. Recently, Few-Shot Learning (FSL) has been actively studied to tackle this problem. Utilizing prior knowledge obtained through observations on related domains, FSL achieved significant performance with only a few samples. In this paper, we present a survey on FSL in terms of data augmentation, embedding and metric learning, and meta-learning. In addition to interesting researches, we also introduce major benchmark datasets. FSL is widely adopted in various domains, but we focus on image analysis in this paper.

Multi Cycle Consistent Adversarial Networks for Multi Attribute Image to Image Translation

  • Jo, Seok Hee;Cho, Kyu Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.63-69
    • /
    • 2020
  • Image-image translation is a technology that creates a target image through input images, and has recently shown high performance in creating a more realistic image by utilizing GAN, which is a non-map learning structure. Therefore, there are various studies on image-to-image translation using GAN. At this point, most image-to-image translations basically target one attribute translation. But the data used and obtainable in real life consist of a variety of features that are hard to explain with one feature. Therefore, if you aim to change multiple attributes that can divide the image creation process by attributes to take advantage of the various attributes, you will be able to play a better role in image-to-image translation. In this paper, we propose Multi CycleGAN, a dual attribute transformation structure, by utilizing CycleGAN, which showed high performance among image-image translation structures using GAN. This structure implements a dual transformation structure in which three domains conduct two-way learning to learn about the two properties of an input domain. Experiments have shown that images through the new structure maintain the properties of the input area and show high performance with the target properties applied. Using this structure, it is possible to create more diverse images in the future, so we can expect to utilize image generation in more diverse areas.

Development of Automatic Crack Identification Algorithm for a Concrete Sleeper Using Pattern Recognition (패턴인식을 이용한 콘크리트침목의 자동균열검출 알고리즘 개발)

  • Kim, Minseu;Kim, Kyungho;Choi, Sanghyun
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.374-381
    • /
    • 2017
  • Concrete sleepers, installed on majority of railroad track in this nation can, if not maintained properly, threaten the safety of running trains. In this paper, an algorithm for automatically identifying cracks in a sleeper image, taken by high-resolution camera, is developed based on Adaboost, known as the strongest adaptive algorithm and most actively utilized algorithm of current days. The developed algorithm is trained using crack characteristics drawn from the analysis results of crack and non-crack images of field-installed sleepers. The applicability of the developed algorithm is verified using 48 images utilized in the training process and 11 images not used in the process. The verification results show that cracks in all the sleeper images can be successfully identified with an identification rate greater than 90%, and that the developed automatic crack identification algorithm therefore has sufficient applicability.

The direction of development of the no code platform for AI model development (AI 개발을 위한 노 코드 플랫폼의 개발 방향)

  • Shin, Yujin;Yang, Huijin;Jang, Dayoung;Jang, Hyeonjun;Koh, Seokju;Han, Donghee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.172-175
    • /
    • 2021
  • 4차 산업혁명이 시작된 이래로 다양한 산업 분야에서 AI가 활용되고 있고, 그 중에서도 컴퓨터 비전 분야에서 딥러닝 기술이 각광받고 있다. 하지만 딥러닝 기술은 높은 전문 지식이 요구되어 관련 지식이 없는 일반인들은 활용하기 어렵다. 본 논문에서는 AI 관련 배경지식이 없는 사용자들도 UI를 통해 쉽게 이미지 분류 모델을 학습시킬 수 있는 노 코드 플랫폼에 관하여 기술하고, django 프레임워크를 이용해 웹 개발과 딥러닝 모델 학습을 통합 개발을 위한 아키텍처와 방향성을 제시하고자 한다. 사용자가 웹서버에 업로드한 이미지들을 웹 인터페이스를 통해 라벨링 하여 학습 데이터를 생성한 후, 이 데이터를 사용하여 모델을 학습시킨다. CNN 모델에 데이터를 학습시키는 과정과 생성된 모델 기반으로 이미지 예측하는 모듈을 통해 전문지식이 없는 사용자가 딥러닝 기술에 대해 쉽게 이해하고 이용하는 것을 기대할 수 있다.

  • PDF

Glaring Wall Pad classification by transfer learning (전이학습을 이용한 전반사가 있는 월패드 분류)

  • Lee, Yong-Jun;Jo, Geun-Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.35-36
    • /
    • 2021
  • 딥러닝을 이용한 이미지 처리에서 데이터 셋이 반드시 필요하다. 월패드는 널리 보급되는 다양한 성능을 포함한 IoT가전으로 그 기능의 사용을 돕기 위해서는 해당 월패드에 해당하는 매뉴얼을 제공해야 하고 이를 위해 딥러닝을 이용한 월패드 분류를 이용 할 수 있다. 하지만 월패드 중 일부 모델은 화면의 전반사가 매우 심해 기존의 작은 데이터 셋으로는 딥러닝을 이용한 이미지 분류 성능이 좋지 못하다. 본 논문은 이를 해결하기 위해 추가적으로 데이터 셋을 구축하고 이를 이용해 대규모 데이터로 사전 학습된 VGG16, VGG19, ResNet50, MobileNet 등을 이용해 전이학습을 통해 월패드를 분류한다.

  • PDF

Re-Destyle: Exemplar-Based Neural Style Transfer using Improved Facial Destylization (Re-Destyle: 개선된 Facial Destylization 을 활용한 예시 기반 신경망 스타일 전이 연구)

  • Yoo, Joowon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1339-1342
    • /
    • 2022
  • 예술적 스타일 전이는 예술 작품이 지닌 특징을 다른 이미지에 적용하는 이미지 처리의 오랜 화두 중 하나로, 최근에는 StyleGAN 과 같이 미리 학습된 GAN(생성적 적대 신경망)을 통해 제한된 데이터로도 고해상도의 예술적 초상화를 생성하도록 학습하는 연구가 다양한 방면에서 성과를 내고 있다. 본 논문에서는 2 가지 경로의 StyleGAN과 Facial Destylization 을 통해 고해상도의 예시 기반 스타일 전이를 달성한 DualStyleGAN 연구에 대해 소개하고, 기존 연구에서 사용된 Facial Destylization 방법이 지닌 한계점을 분석한 뒤, 이를 개선한 새로운 방법, Re-Destyle을 제안한다. 새로운 Re-Destyle 방법으로 Facial Destylization 을 적용할 경우 학습 시간을 기존 연구의 방법보다 20 배 이상 개선할 수 있으며 그 결과 1000 개 이하의 적은 데이터와 1~2 시간의 추가 학습만으로도 원하는 타겟 초상화 스타일에 대해 1024×1024 수준의 고해상도의 예시 기반 초상화 스타일 전이 및 이미지 생성 모델을 학습할 수 있다.

  • PDF