• Title/Summary/Keyword: 이미지 탐지

Search Result 448, Processing Time 0.023 seconds

Forest Change Detection Service Based on Artificial Intelligence Learning Data (인공지능 학습용 데이터 기반의 산림변화탐지 서비스)

  • Chung, Hankun;Kim, Jong-in;Ko, Sun Young;Chai, Seunggi;Shin, Youngtae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.347-354
    • /
    • 2022
  • Since the era of the 4th industrial revolution has been ripe, the use of artificial intelligence(AI) based on massive data is beginning to be actively applied in various fields. However, as the process of analyzing forest species is carried out manually, many errors are occurring. Therefore, in this paper, about 60,000 pieces of AI learning data were automatically analyzed for pine, larch, conifer, and broadleaf trees of aerial photographs and pseudo images in the metropolitan area, and an AI model was developed to distinguish tree species. Through this, it is expected to increase in work efficiency by using the tree species division image as basic data when producing forest change detection and forest field topics.

Computer Vision-Based Measurement Method for Wire Harness Defect Classification

  • Yun Jung Hong;Geon Lee;Jiyoung Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • In this paper, we propose a method for accurately and rapidly detecting defects in wire harnesses by utilizing computer vision to calculate six crucial measurement values: the length of crimped terminals, the dimensions (width) of terminal ends, and the width of crimped sections (wire and core portions). We employ Harris corner detection to locate object positions from two types of data. Additionally, we generate reference points for extracting measurement values by utilizing features specific to each measurement area and exploiting the contrast in shading between the background and objects, thus reflecting the slope of each sample. Subsequently, we introduce a method using the Euclidean distance and correction coefficients to predict values, allowing for the prediction of measurements regardless of changes in the wire's position. We achieve high accuracy for each measurement type, 99.1%, 98.7%, 92.6%, 92.5%, 99.9%, and 99.7%, achieving outstanding overall average accuracy of 97% across all measurements. This inspection method not only addresses the limitations of conventional visual inspections but also yields excellent results with a small amount of data. Moreover, relying solely on image processing, it is expected to be more cost-effective and applicable with less data compared to deep learning methods.

Data augmentation in voice spoofing problem (데이터 증강기법을 이용한 음성 위조 공격 탐지모형의 성능 향상에 대한 연구)

  • Choi, Hyo-Jung;Kwak, Il-Youp
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.449-460
    • /
    • 2021
  • ASVspoof 2017 deals with detection of replay attacks and aims to classify real human voices and fake voices. The spoofed voice refers to the voice that reproduces the original voice by different types of microphones and speakers. data augmentation research on image data has been actively conducted, and several studies have been conducted to attempt data augmentation on voice. However, there are not many attempts to augment data for voice replay attacks, so this paper explores how audio modification through data augmentation techniques affects the detection of replay attacks. A total of 7 data augmentation techniques were applied, and among them, dynamic value change (DVC) and pitch techniques helped improve performance. DVC and pitch showed an improvement of about 8% of the base model EER, and DVC in particular showed noticeable improvement in accuracy in some environments among 57 replay configurations. The greatest increase was achieved in RC53, and DVC led to an approximately 45% improvement in base model accuracy. The high-end recording and playback devices that were previously difficult to detect were well identified. Based on this study, we found that the DVC and pitch data augmentation techniques are helpful in improving performance in the voice spoofing detection problem.

Applicability Evaluation of Deep Learning-Based Object Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8 and RT-DETR (해안쓰레기 탐지 및 모니터링에 대한 딥러닝 기반 객체 탐지 기술의 적용성 평가: YOLOv8과 RT-DETR을 중심으로)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Seungyeol Oh;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1195-1210
    • /
    • 2023
  • Coastal debris has emerged as a salient issue due to its adverse effects on coastal aesthetics, ecological systems, and human health. In pursuit of effective countermeasures, the present study delineated the construction of a specialized image dataset for coastal debris detection and embarked on a comparative analysis between two paramount real-time object detection algorithms, YOLOv8 and RT-DETR. Rigorous assessments of robustness under multifarious conditions were instituted, subjecting the models to assorted distortion paradigms. YOLOv8 manifested a detection accuracy with a mean Average Precision (mAP) value ranging from 0.927 to 0.945 and an operational speed between 65 and 135 Frames Per Second (FPS). Conversely, RT-DETR yielded an mAP value bracket of 0.917 to 0.918 with a detection velocity spanning 40 to 53 FPS. While RT-DETR exhibited enhanced robustness against color distortions, YOLOv8 surpassed resilience under other evaluative criteria. The implications derived from this investigation are poised to furnish pivotal directives for algorithmic selection in the practical deployment of marine debris monitoring systems.

Iris Detection at a Distance by Non-volunteer Method (비강압적 방법에 의한 원거리에서의 홍채 탐지 기법)

  • Park, Kwon-Do;Kim, Dong-Su;Kim, Jeong-Min;Song, Young-Ju;Koh, Seok-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.705-708
    • /
    • 2018
  • Among biometrics commercialized for security, iris recognition technology has the most excellent security for the probability of the match between individuals is the lowest. Current commercialized iris recognition technology has excellent recognition ability, but this technology has a fatal drawback. Without the user's active cooperation, it cannot recognize the iris correctly. To make up for this weakness, recent trend of iris recognition development mounts a non-volunteering, unconstrained method. According to this information, the objective of this research is developing a module that can identify people iris from a video acquired by high performance infrared camera in a range of 3m and in a involuntary way. For this, we import images from the video and find people's face and eye positions from the images using Haar classifier trained through Cascade training method. finally, we crop the iris by Hough circle transform and compare it with data from the database to identify people.

  • PDF

Line Segments Matching Framework for Image Based Real-Time Vehicle Localization (이미지 기반 실시간 차량 측위를 위한 선분 매칭 프레임워크)

  • Choi, Kanghyeok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • Vehicle localization is one of the core technologies for autonomous driving. Image-based localization provides location information efficiently, and various related studies have been conducted. However, the image-based localization methods using feature points or lane information has a limitation that positioning accuracy may be greatly affected by road and driving environments. In this study, we propose a line segment matching framework for accurate vehicle localization. The proposed framework consists of four steps: line segment extraction, merging, overlap area detection, and MSLD-based segment matching. The proposed framework stably performed line segment matching at a sufficient level for vehicle positioning regardless of vehicle speed, driving method, and surrounding environment.

Strawberry disease diagnosis service using EfficientNet (EfficientNet 활용한 딸기 병해 진단 서비스)

  • Lee, Chang Jun;Kim, Jin Seong;Park, Jun;Kim, Jun Yeong;Park, Sung Wook;Jung, Se Hoon;Sim, Chun Bo
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.26-37
    • /
    • 2022
  • In this paper, images are automatically acquired to control the initial disease of strawberries among facility cultivation crops, and disease analysis is performed using the EfficientNet model to inform farmers of disease status, and disease diagnosis service is proposed by experts. It is possible to obtain an image of the strawberry growth stage and quickly receive expert feedback after transmitting the disease diagnosis analysis results to farmers applications using the learned EfficientNet model. As a data set, farmers who are actually operating facility cultivation were recruited and images were acquired using the system, and the problem of lack of data was solved by using the draft image taken with a cell phone. Experimental results show that the accuracy of EfficientNet B0 to B7 is similar, so we adopt B0 with the fastest inference speed. For performance improvement, Fine-tuning was performed using a pre-trained model with ImageNet, and rapid performance improvement was confirmed from 100 Epoch. The proposed service is expected to increase production by quickly detecting initial diseases.

A Calf Disease Decision Support Model (송아지 질병 결정 지원 모델)

  • Choi, Dong-Oun;Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1462-1468
    • /
    • 2022
  • Among the data used for the diagnosis of calf disease, feces play an important role in disease diagnosis. In the image of calf feces, the health status can be known by the shape, color, and texture. For the fecal image that can identify the health status, data of 207 normal calves and 158 calves with diarrhea were pre-processed according to fecal status and used. In this paper, images of fecal variables are detected among the collected calf data and images are trained by applying GLCM-CNN, which combines the properties of CNN and GLCM, on a dataset containing disease symptoms using convolutional network technology. There was a significant difference between CNN's 89.9% accuracy and GLCM-CNN, which showed 91.7% accuracy, and GLCM-CNN showed a high accuracy of 1.8%.

A Technique for Interpreting and Adjusting Depth Information of each Plane by Applying an Object Detection Algorithm to Multi-plane Light-field Image Converted from Hologram Image (Light-field 이미지로 변환된 다중 평면 홀로그램 영상에 대해 객체 검출 알고리즘을 적용한 평면별 객체의 깊이 정보 해석 및 조절 기법)

  • Young-Gyu Bae;Dong-Ha Shin;Seung-Yeol Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2023
  • Directly converting the focal depth and image size of computer-generated-hologram (CGH), which is obtained by calculating the interference pattern of light from the 3D image, is known to be quite difficult because of the less similarity between the CGH and the original image. This paper proposes a method for separately converting the each of focal length of the given CGH, which is composed of multi-depth images. Firstly, the proposed technique converts the 3D image reproduced from the CGH into a Light-Field (LF) image composed of a set of 2D images observed from various angles, and the positions of the moving objects for each observed views are checked using an object detection algorithm YOLOv5 (You-Only-Look-Once-version-5). After that, by adjusting the positions of objects, the depth-transformed LF image and CGH are generated. Numerical simulations and experimental results show that the proposed technique can change the focal length within a range of about 3 cm without significant loss of the image quality when applied to the image which have original depth of 10 cm, with a spatial light modulator which has a pixel size of 3.6 ㎛ and a resolution of 3840⨯2160.

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification