• 제목/요약/키워드: 이미지 카테고리화

검색결과 21건 처리시간 0.024초

다중 특징값의 조합을 이용한 자동적 이미지 카테고리화 방법 (Automatic Image Categorization using Combination of Multiple Features)

  • 양승지;윤정현;노용만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.39-42
    • /
    • 2002
  • 본 논문에서는 내용 기반 이미지 검색 및 필터링 시스템을 위한 카테고리 식별 방법을 제안한다. 제안된 방법에서는 식별 가능한 카테고리를 사전에 정의하고, 정의된 카테고리를 대표할 수 있는 이미지들을 수집한다. 다음으로, 이들로부터 다중의 내용 기반 특징값을 추출하고, 추출된 특징값들로 카테고리 데이터베이스를 구성한다. 카테고리를 식별할 질의 이미지가 입력으로 들어오면, 질의 이미지로부터 추출된 다중 특징값들을 각 카테고리의 단일 특징값과 각각 비교함으로써, 카테고리를 대표하는 다중의 유사도 거리값을 측정한다. 각 카테고리를 대표하는 다중의 유사도 거리값들은 두 가지 연산 방법에 의해 조합되는데, 조합 방법은 각각의 단일 특징값이 각 카테고리 식별에 미치는 영향을 고려하여 정의된다. 최종적으로, 각 카테고리의 조합된 유사도 거리값을 비교한 다음, 가장 유사도가 큰 카테고리를 해당 질의 이미지의 카테고리로 식별한다.

  • PDF

효과적인 이미지 검색을 위한 태그 기반의 폭소노미 이미지 카테고리화 기법 (A Categorization Scheme of Tag-based Folksonomy Images for Efficient Image Retrieval)

  • 하은지;김용성;황인준
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권6호
    • /
    • pp.290-295
    • /
    • 2016
  • 최근 사용자들이 협동적으로 이미지 주석인 태그를 만들고 활용하는 폭소노미 기반의 이미지 공유 사이트들이 많은 인기를 얻고 있다. 이러한 사이트는 사용자 질의에 대해 단순한 텍스트 매칭 기반의 검색을 수행하고 매칭되는 결과 이미지들을 포토 스트림 형태로 나열하여 보여 준다. 하지만 이러한 태그들은 매우 개인적이고 주관적이며, 이미지 역시 카테고리로 분류되어 있지 않기 때문에 검색의 정확도나 사용자 만족도가 떨어진다는 문제점이 있다. 본 연구에서는 태그를 기반으로 하는 이미지 검색에서 검색의 정확도를 높일 수 있는 폭소노미 이미지의 카테고리화 기법을 제안하고, 폭소노미 환경에서 생성된 태그와 이미지 정보를 모두 이용하며 의미적으로 유사한 이미지들끼리 분류된 검색 결과를 생성한다. 제안하는 기법의 성능 평가를 위해 폭소노미 이미지를 수집하고 텍스트, 이미지 특성에 따른 카테고리 분류를 수행하여 기존 검색 기법과 이미지 검색의 정확도를 비교한다.

유명인 이미지를 활용한 MBTI 성격 유형 시각화 방식 제안 (A proposal of visualization method of MBTI personality types using celebrity images)

  • 신호선;이강희
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제6권8호
    • /
    • pp.491-498
    • /
    • 2016
  • 본 논문은 MBTI 성격 유형을 '5요인 성격 특성 요소'로 분류한 카테고리화, 각각의 유형에 해당하는 유명인의 이미지를 기반으로 하는 시각화를 기반으로 한다. 이 두 특성을 이용하여 사용자의 MBTI 성격 유형을 시각화하여 표현할 수 있는 시스템을 제안한다. 해당 시스템은 기존의 문자화되어 있는 유형의 특성을 시각화하여 이해하기 쉽게 보여준다는 것에 의의가 있다. 전체적인 시스템은 '5요인 성격 특성 요소'를 활용하여 카테고리 별 특성을 반영한 배경 생성 과정과 16가지 MBTI 유형에 해당하는 유명인 이미지의 결합으로 구성되었다. 첫째, '5요인 성격 특성 요소'는 MBTI 성격 유형을 4가지 카테고리로 분류하는데 각각의 카테고리 별 특성은 색상 및 선과 같은 시각적 요소들을 이용하여 배경을 만드는 기반이 된다. 둘째, 유형별 유명인의 이미지는 문자적 설명을 대신한다. 유형을 대표하는 유명인의 이미지에는 각기 다른 채도를 적용하여 이용자가 직관적으로 구별할 수 있도록 했다. 결과적으로, 해당 시스템은 이용자가 이용자 본인의 원 유형과 유사 유형 및 반대 유형 그리고 타 유형에 대한 정보까지도 얻을 수 있게 한다.

웹 크롤링과 전이학습을 활용한 이미지 분류 모델 (Image Classification Model using web crawling and transfer learning)

  • 이주혁;김미희
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.639-646
    • /
    • 2022
  • 딥러닝의 발전으로 딥러닝 모델들이 이미지 인식, 음성 인식 등 여러 분야에서 활발하게 사용 중이다. 하지만 이 딥러닝을 효과적으로 사용하기 위해서는 대형 데이터 세트가 필요하지만 이를 구축하기에는 많은 시간과 노력 그리고 비용이 필요하다. 본 논문에서는 웹 크롤링이라는 이미지 수집 방법을 통해서 이미지를 수집하고 데이터 전처리 과정을 거쳐 이미지 분류 모델에 사용할 수 있게 데이터 세트를 구축한다. 더 나아가 전이학습을 이미지 분류 모델에 접목해 카테고리값을 넣어 자동으로 이미지를 분류할 수 있는 경량화된 모델과 적은 훈련 시간 및 높은 정확도를 얻을 수 있는 이미지 분류 모델을 제안한다.

설명 가능한 이미지 인식을 위한 채널 주의 기반 딥러닝 방법 (Deep Learning Methods for Explainable Image Recognition)

  • 백나;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.586-589
    • /
    • 2024
  • 본 실험 연구에서는 주의 메커니즘과 컨볼루션 신경망을 결합하여 모델을 개선하는 방법을 탐색하는 딥 러닝 기술을 소개한다. 이 기술은 지도 학습 방식을 위해 공개 데이터 세트의 쓰레기 분류 데이터를 사용하고, Grad-CAM 기술과 채널 주의 메커니즘 SE 를 적용하여 모델의 분류 의사 결정 과정을 더 잘 이해하기 위해 히트 맵을 생성한다. Grad-CAM 기술을 사용하여 히트 맵을 생성하면 분류 중에 모델이 집중하는 영역을 시각화할 수 있다. 이는 모델의 분류 결정을 설명하는 방법을 제공하여 다양한 이미지 카테고리에 대한 모델 결정의 기초를 더 잘 이해할 수 있다. 실험 결과는 전통적인 합성곱 신경망과 비교하여 제안한 방법이 쓰레기 분류 작업에서 더나은 성능을 달성한다는 것을 보여준다. 주의 메커니즘과 히트맵 해석을 결합함으로써 우리 모델은분류 정확도를 향상시킬 수 있다. 이는 실제 응용 분야의 이미지 분류 작업에 큰 의미가 있으며 해석 가능성에 대한 딥 러닝 연구 진행을 촉진하는 데 도움이 된다.

지문분류 기술 동향 분석 (Technical Trend Analysis of Fingerprint Classification)

  • 정혜욱;이승
    • 한국콘텐츠학회논문지
    • /
    • 제17권9호
    • /
    • pp.132-144
    • /
    • 2017
  • 대용량 지문 데이터베이스를 사용하는 지문인식 시스템에서 처리 속도와 정확성을 높이기 위해서는 지문을 클래스별로 카테고리화하는 지문분류 기술을 사용해야 한다. 지문분류 방법은 지문 융선으로부터 특징을 추출하고 지문 융선의 흐름과 형상에 따라 정의되어 있는 클래스를 기준으로 학습 및 추론 기법을 이용하여 분류한다. 기존에는 종이에 회전 날인하여 습득된 NIST 데이터베이스를 이용한 연구가 많이 수행되었지만, 지문인식 입력 센서를 이용한 자동화된 시스템이 보편화됨에 따라 FVC에서 공개한 지문 데이터와 같이 센서로부터 입력된 지문 이미지를 이용한 연구가 증가하고 있으며, 최근에는 딥러닝을 이용한 지문분류 방법이 제안되고 있다. 본 논문에서는 지문분류를 위한 특징 추출 및 분류 기술의 동향을 살펴보고 분류성능을 비교한다. 또한 센서 기반 지문 이미지의 다양한 품질을 고려한 지문분류 기술 연구의 필요성에 대하여 정리하고, 딥러닝 기술을 적용한 지문분류 방법을 분석해 봄으로써 지속적으로 사용이 증가되고 있는 대용량 지문 데이터베이스의 분류 기술 연구에 대한 성능향상에 보탬이 되고자 한다.

농업기계 종합정보시스템 개발 (Development of Total Information System for Agricultural Machinery)

  • 김병갑;신승엽;이용복;윤진하;이중용
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2002년도 하계 학술대회 논문집
    • /
    • pp.419-423
    • /
    • 2002
  • 본 연구는 농업기계에 관한 정보를 종합적으로 체계화하여 데이터베이스로 구축하고 정보 수요자가 인터넷을 통해 구축된 데이터베이스를 쉽게 검색할 수 있는 프로그램을 개발하기 위 해 수행되었다. 가. 농업기계 정보 DB는 농업기계와 관련된 텍스트, 이미지, 수치자료들을 데이터베이스화한 것으로서 지원시책, 구입, 이용, 사후관리, 연구 및 교육, 시험평가, 통계, 기타 정보 등의 8개의 카테고리로 구성하였으며 원시자료가 텍스트, 이미지 자료인 경우는 Html로 자체 제작하거나 기존 사이트에 링크하고, 원시자료가 수치자료인 농업기계 사양 및 농업기계화 현황은 관계형 데이터베이스로 구축하였다. 나. 구축된 농업기계 정보 DB를 검색하기 위하여 검색프로그램을 개발하였다. Html로 제작된 DB는 메뉴식 검색방법 또는 검색어 검색방법으로 검색할 수 있으며 관계형 DB는 DBMS를 개발하여 검색이 가능하도록 하였다.

  • PDF

다변량해석기법을 활용한 감성 데이터베이스 구축에 관한 연구

  • 박정호;한성배;양선모;김형범;이순요
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1996년도 춘계학술대회논문집
    • /
    • pp.136-140
    • /
    • 1996
  • 제품개발의 개념이 기능이나 성능중심에서 인간의 감성중심으로전환되고 있다. 그러나 인간의 감 성은 정성적 언어로 표현되며 이것을 물리적 디자인요소로 전환하는 것이 필요하다. 이를 위하여는 우선적으로 인간의 감성을 정량화하는 것이 선결되어야한다. 따라서 본 연구의 목적은 다변량해석기법 을 활용하여 고객의 제품에 대한 정성적 이미지를 정량적 데이터로 변환하여 이를 감성 데이터베이스로 구축하는데 있다. 감성 데이터베이스는 감성어휘와 이의 제품에 대한 정량적 수치 데이터로 구성되고, 이를 위해서는 감성어휘 선정, 디자인 요소에 의한 제품의 분류, 감성어휘와 디자인요소간의 상관도 도출 등이 필요하다. 감성어휘는 요인분석에 의해 선정하고, 제품은 아이템/카테고리에 의해 분류하며, 감성어휘와 디자인요소간의 상관성에 대해서는 다변량해석기법 특히, 수량화이론 1류를 사용해서 정량화 한다. 이렇게 구축된 감성 데이터베이스는 감성공학적 디자인 요소변환 지원시스템의 감성데이터 처리 서브시스템의 핵심 역활을 한다.

  • PDF

AI 학습모델 및 AI모델 서빙 서버 개발을 통한 생활안전 예방 서비스 신고 이미지 자동분류 시스템 개발에 대한 연구 (A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server)

  • 정영식;김용운;임정일
    • 한국재난정보학회 논문집
    • /
    • 제19권2호
    • /
    • pp.432-438
    • /
    • 2023
  • 연구목적: 생활안전 예방서비스 앱에서 신고되는 이미지를 AI를 사용하여 실시간으로 위험 카테고리를 자동으로 분류하여 사용자에게 편리한 위험신고를 가능하게 하는 것을 목적으로 한다. 연구방법: 인터넷으로 상호연결되는 생활안전 예방서비스 플랫폼, 생활안전 예방서비스 앱, AI 모델 서빙 서버와 sftp 서버로 구성되는 시스템을 통하여 신고된 생활안전 이미지를 실시간으로 자동분류하며, 이때 사용되는 AI모델 생성을 위한 AI 학습 알고리즘도 개발하였다. 연구결과: 이미지를 실시간으로 AI 처리하여 자동으로 분류할 수 있게 되어, 신고자가 생활안전 관련 사항을 보다 편리하게 신고할 수 있게 되었다. 결론: 본 논문에서 제시하는 AI 이미지 자동분류 시스템은 90% 이상의 분류 정확도로 신고 이미지를 실시간으로 자동분류하여 신고자가 간편하게 생활안전 관련 이미지를 신고할 수 있게 되었으며 향후 생활안전 예방서비스 앱의 사용자의 증가에 따라 더욱 빠르고 정확한 AI 모델 개발 및 시스템 처리용량 향상이 필요하다.

시각 정보를 활용한 딥러닝 기반 추천 시스템 (A Deep Learning Based Recommender System Using Visual Information)

  • 문현실;임진혁;김도연;조윤호
    • 지식경영연구
    • /
    • 제21권3호
    • /
    • pp.27-44
    • /
    • 2020
  • 사용자의 정보 과부하 문제의 해결을 목표로 하는 추천 시스템은 개인의 선호를 추론하여 이에 부합하는 아이템을 필터링하여 제공한다. 추천 시스템 관련 기법 중 가장 성공적으로 알려져 있는 협업 필터링은 최근까지 다양한 성능 개선 시도가 이루어지고 있으며 여러 분야에 적용되고 있다. 본 연구에서는 이와 같은 협업 필터링의 성공에 기반하여 소비자의 구매 의사결정에 영향을 미칠 수 있는 시각 정보를 추천 시스템에 반영할 수 있는 VizNCS를 제안한다. 이를 위하여 먼저, 비정형 데이터인 시각 정보에서 특징을 추출하기 위해 합성곱 신경망을 사용하였다. 다음으로, 합성곱 신경망으로 부터 도출된 이미지 특성 정보를 추천 시스템에 반영하기 위하여 기존의 딥러닝 기반의 추천 시스템 중 다른 정보로 확장이 용이한 NCF 기법을 응용하였다. 본 연구에서 제안한 VizNCS의 성능 비교 실험 결과 기본 NCF보다 더 높은 성능을 보였으며 카테고리별 성능 비교 실험을 통해 시각 정보에 영향을 받는 카테고리와 그렇지 않은 카테고리를 발견하였다. 결론적으로 본 연구에서 제안한 VizNCS는 시각정보를 개인화된 추천에 직접 활용함에 따라 시각 정보에 영향을 받는 소비자들의 구매의사결정 행태를 반영할 수 있어 추천 시스템 성능 향상에 기여하였다. 또한, 지금까지 활용이 미미했던 이미지 데이터로 추천 시스템의 원천 데이터 영역을 확장함에 따라 다양한 원천 데이터의 활용 방안을 제시하였다.