• 제목/요약/키워드: 이미지 좌우 반전

검색결과 3건 처리시간 0.017초

객체 인식 정확도 개선을 위한 이미지 초해상도 기술 (Image Super-Resolution for Improving Object Recognition Accuracy)

  • 이성진;김태준;이충헌;유석봉
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.774-784
    • /
    • 2021
  • 객체 검출 및 인식 과정은 컴퓨터비전 분야에서 매우 중요한 과업으로써, 관련 연구가 활발하게 진행되고 있다. 그러나 실제 객체 인식 과정에서는 학습된 이미지 데이터와 테스트 이미지 데이터간 해상도 차이로 인하여 인식기의 정확도 성능이 저하되는 문제가 종종 발생한다. 이를 해결하기 위해 본 논문에서는 객체 인식 정확도 향상을 위한 이미지 초해상도 기법을 제안하여 객체 인식 및 초해상도 통합 프레임워크를 설계하고 개발하였다. 세부적으로는 11,231장의 차량 번호판 훈련용 이미지를 웹 크롤링, 인조데이터 생성 등을 통해 자체적으로 구축하고, 이를 활용하여 이미지 좌우 반전에 강인하도록 목적함수를 정의하여 이미지 초해상도 인공 신경망을 훈련시켰다. 제안 방법의 성능을 검증하기 위해 훈련된 이미지 초해상도 및 번호 인식기 1,999장의 테스트 이미지에 실험하였고, 이를 통해 제안한 초해상도 기법이 문자 인식 정확도 개선 효과가 있음을 확인하였다.

CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법 (3D Medical Image Data Augmentation for CT Image Segmentation)

  • 고성현;양희규;김문성;추현승
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.85-92
    • /
    • 2023
  • X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI)과 같은 의료데이터에서 딥러닝을 활용해 질병 유무 판별 태스크와 같은 문제를 해결하려는 시도가 활발하다. 대부분의 데이터 기반 딥러닝 문제들은 높은 정확도 달성과 정답과 비교하는 성능평가의 활용을 위해 지도학습기법을 사용해야 한다. 지도학습에는 다량의 이미지와 레이블 세트가 필요하지만, 학습에 충분한 양의 의료 이미지 데이터를 얻기는 어렵다. 다양한 데이터 증강 기법을 통해 적은 양의 의료이미지와 레이블 세트로 지도학습 기반 모델의 과소적합 문제를 극복할 수 있다. 본 연구는 딥러닝 기반 갈비뼈 골절 세그멘테이션 모델의 성능 향상과 효과적인 좌우 반전, 회전, 스케일링 등의 데이터 증강 기법을 탐색한다. 좌우 반전과 30° 회전, 60° 회전으로 증강한 데이터셋은 모델 성능 향상에 기여하지만, 90° 회전 및 ⨯0.5 스케일링은 모델 성능을 저하한다. 이는 데이터셋 및 태스크에 따라 적절한 데이터 증강 기법의 사용이 필요함을 나타낸다.

전이 학습과 데이터 증강을 이용한 너구리와 라쿤 분류 (Classification of Raccoon dog and Raccoon with Transfer Learning and Data Augmentation)

  • 박동민;조영석;염석원
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.34-41
    • /
    • 2023
  • 최근 인간의 활동 범위가 증가함에 따라 외래종의 유입이 잦아지고 있고 환경에 적응하지 못해 유기된 외래종 중 2020년부터 유해 지정 동물로 지정된 라쿤이 문제가 되고 있다. 라쿤은 국내 토종 너구리와 크기나 생김새가 유사하여 일반적으로 포획하는데 있어서 구분이 필요하다. 이를 해결하기 위해서 이미지 분류에 특화된 CNN 딥러닝 모델인 VGG19, ResNet152V2, InceptionV3, InceptionResNet, NASNet을 사용한다. 학습에 사용할 파라미터는 많은 양의 데이터인 ImageNet으로 미리 학습된 파라미터를 전이 학습하여 이용한다. 너구리와 라쿤 데이터셋에서 동물의 외형적인 특징으로 분류하기 위해서 이미지를 회색조로 변환한 후 밝기를 정규화하였으며, 조정된 데이터셋에 충분한 학습을 위한 데이터를 만들기 위해 좌우 반전, 회전, 확대/축소, 이동을 이용하여 증강 기법을 적용하였다. 증강하지 않은 데이터셋은 FCL을 1층으로, 증강된 데이터셋은 4층으로 구성하여 진행하였다. 여러 가지 증강된 데이터셋의 정확도를 비교한 결과, 증강을 많이 할수록 성능이 증가함을 확인하였다.