• Title/Summary/Keyword: 이미지 유사도

Search Result 872, Processing Time 0.027 seconds

Similarity-based Image Clustering Method using Hierarchical Clustering Technique (다단계 클러스터링 기법을 이용한 이미지 클러스터링 기법에 관한 연구)

  • 한정규;김석대;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.707-709
    • /
    • 2003
  • 본 논문에서는 유사도(similarity) 기반 이미지 클러스터링 기법에 대하여 논하고자 한다. 비트맵 이미지의 특징을 추출하고 이러한 특징에 기반한 유사도 측정 함수들을 소개하고 이미지 클러스터링 알고리즘과 구현을 통한 실험 예제들에 대해서 설명한다. 이 실험에서 우리는 유사도에 따라 이미지들이 계층적(Hierarchical)으로 집단화 되는 계층적 클러스터링 알고리즘을 사용하였다. 이미지의 특징 표현을 위해서는 HSV 기반의 히스토그램을 이용하였다. 본 논문에서 제안한 기법의 실험 결과는 이미지 데이터베이스에서 유사한 이미지를 검색하는데 높은 효율성이 있는 것을 보여준다.

  • PDF

Apply Leveling and Tiling to OpenSlide pathology image to retrieve similar cell image (OpenSlide 병리학 이미지에 Leveling과 Tiling 기법을 적용한 유사 세포 이미지 탐색)

  • Lee, Jae Gu;Ko, Youngwoong
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • 다양한 분야에서 특정 이미지와 유사한 내용의 이미지를 찾기 위해서 이미지 유사도 기법을 지원하는 웹 또는 프로그램이 많이 사용되고 있다. 본 논문에서는 이미지 유사도 기법을 병리학 이미지에 적용하여 특정 세포를 찾는데 사용함으로써 사용자에게 정확하고 신뢰성 있는 정보를 전달하려 한다. 실제로 병리학에서 특정 세포를 찾기에는 세포의 크기가 너무 작고 모양이 일정하지 않는다는 점 때문에 유사한 세포를 찾기가 힘들다. 이를 해결하기 위해 Leveling과 Tiling 방식을 적용하여 데이터를 추출하고 이미지 동기화를 통해 유사도 비교 시 정확도를 높이도록 한다. 다양한 병리학 이미지 포맷을 지원하는 OpenSlide 기반의 대용량 이미지에 제안하는 방식을 적용하여 특정 세포와 유사한 부분을 찾아내는 실험을 통하여 제안하는 방식이 효율적임을 보인다.

A Study on Image Retrieval Using the Spatial Distribution of Color (색상의 공간적 분포를 이용한 이미지 검색에 관한 연구)

  • Kim Yong-Kwang
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2006.08a
    • /
    • pp.183-189
    • /
    • 2006
  • 이 연구에서는 색상 자질을 이용하여 이미지를 검색할 때 이미지를 분할하여 각 영역별로 색인하여 검색하는 것의 유용성을 알아보고 분할된 영역간의 유사도 산출 기법을 제안하였다. 실험결과, 질의 이미지의 특정 영역과 최대의 유사도를 갖는 검색 이미지의 영역을 이미지간 유사도 산출 방법으로 이용하고, 이미지 영역을 세분할수록 이미지 검색 성능이 향상되었다. 특히 검색 성능이 좋지 않은 질의 이미지의 경우, 이 연구에서 제안한 기법이 더욱 유용하였다.

  • PDF

Contents-based Image Retrieval using Color and Invariant Moments (색상과 불변 모멘트를 이용한 내용기반 이미지 검색)

  • Kim, Mok-Ryun;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.161-164
    • /
    • 2007
  • 최근 인터넷과 멀티미디어 기술이 발달함에 따라 이미지 데이터의 양이 급속히 증가하고 있다. 증가하는 이미지를 효과적으로 관리하고 검색하기 위해 내용기반 이미지 검색에 대한 연구가 활발히 진행되고 있다. 대부분의 내용 기반 이미지 검색 시스템은 색상, 모양, 질감 특징을 이용한 유사도-기반검색에 초점을 맞추고 있다. 따라서 본 논문에서는 이미지에 나타나는 주요 색상과 색상의 공간적 특성을 포함하는 픽셀샘플링, 그리고 이미지의 외형적 변경에 강인함을 갖는 불변 모멘트 값을 이용한 내용기반 이미지 검색 시스템을 제안한다. 첫 번째 유사성 검사 단계에서는 이미지의 영역별로 가중치를 부여하여 추출한 대표색상을 사용하여, 유사하지 않은 이미지를 제거하여 검색대상의 수를 줄이며, 두 번째 유사성 검사 단계에서는 첫 번째 단계에서 선별된 후보 이미지에 색상의 공간적 정보를 포함한 픽셀샘플링을 이용하여 색상의 공간적인 위치까지 유사한 이미지만을 선별한다. 두 번째 유사성 검사단계에서 이미지가 외형적으로 변형된 유사이미지의 검출이 어려운 점을 보완하는 방법으로 이미지의 불변 모멘트를 이용하여 검색의 정확성을 높인다. 제안한 이미지 검색 방법은 10000개의 다양한 이미지로 구성된 데이터베이스에서 검색을 효율성을 실험하였다.

Design and Implementation of a Region based Image Retrieval System using Color Information (대표 색상 정보를 이용한 영역 기반 이미지 검색 시스템의 설계 및 구현)

  • Kim, Mok-Ryun;Park, Young-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.462-467
    • /
    • 2008
  • 최근 웹 2.0 시대 참여, 공유, 개방 정신이 확대 되고, 다양한 디지털 저작물들이 대량 제작되어 활용되고 있다. 그리고 디지털 저작물의 특징상 누구나 손쉽게 무제한으로 복제와 유통이 가능함으로 디지털 저작물이 양은 기하급수적으로 증가하고 있다. 증가하는 이미지를 효과적으로 관리하고 검색하기 위해 색상, 질감, 모양 등을 이용한 내용기반 이미지 검색에 대한 연구가 활발히 진행되고 있다. 색상을 이용한 이미지 검색방법의 하나로 색상 히스토그램을 이용한 검색 방법이 있다. 그러나 이는 공간적인 상호관계를 적절히 표현하지 못한다는 단점이 있다. 따라서 본 논문에서는 이미지에 나타나는 주요 색상 및 불변 모멘트 값과 이미지의 중앙을 중심으로 한 영역별 유사도 검사를 통한 내용기반 이미지 검색 시스템을 제안한다. 첫 번째 유사성 검사 단계에서는 이미지의 영역별로 가중치를 부여하여 추출한 대표색상 정보를 사용하여, 유사하지 않은 이미지를 제거하여 검색대상의 수를 줄인다. 두 번째 유사성 검사 단계에서는 이미지를 영역으로 나누고, 이미지의 중심 영역부터 영역을 확장하며 영역마다 구축된 인덱스 검색을 통해 영역기반 유사 이미지 검색을 수행 한다. 세 번 단계에서는 이미지의 변형에 불변한 값인 불변 모멘트를 사용하여, 영역별 검사에서 제외된 유사이미지를 재검사한다. 제안한 이미지 검색 방법은 10000개의 다양한 이미지로 구성된 이미지 데이터베이스에서 검색을 실험을 통해 검색의 정확도 및 회수율을 측정하였다.

  • PDF

Ontology-based Semantic Information Extraction Using An Advanced Content-based Image Retrieval (향상된 콘텐츠 기반 이미지 검색을 이용한 온톨로지 기반 의미적 정보 추출)

  • Shin, Dong-Wook;Jeon, Ho-Chul;Jeong, Chan-Back;Kim, Tae-Hwan;Choi, Joong-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.348-353
    • /
    • 2008
  • 이미지의 사용이 증가함에 따라 이미지 중 사용자가 원하는 이미지를 효율적으로 검색하기 위한 방법들이 연구되어 왔다. 본 논문에서는 질의 이미지를 분석하여 이미지 특징(feature)을 추출한 후 이미지 특징에 대한 유사도 평가를 통한 이미지 검색 및 온톨로지를 기반으로 검색된 이미지들과 유사하다고 판단된 이미지와 그러한 이미지들의 의미적 정보를 추출하는 방법을 제안한다. 제안된 시스템은 질의 이미지에서 색상, 질감, 모양 등의 특징을 추출하여 유사도 평가를 통해 검색된 이미지를 제공하고, 내용기반 이미지 검색 방식을 통해 이미지를 검색하고, 온톨로지를 이용해 이미지의 의미적 정보를 추출하여 사용자에게 이미지와 관련된 의미적 정보를 제공한다.

  • PDF

A Region Based Similar Image Retrieval using Histogram Comparison (히스토그램 비교법을 이용한 영역기반 유사 이미지 검색)

  • 임동혁;김창룡;정진완
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.130-132
    • /
    • 2000
  • 주요 멀티미디어 자료인 이미지는 데이터 특성을 표현하기가 어렵고, 특성추출에서 얻은 데이터가 너무 고차원적이라 이를 저차원의 처리가능한 데이터로 변환하는 과정에서 많은 손실이 있다. 이미지의 특성값을 전체 이미지의 평균값으로 변경하여 저차원 데이터를 얻는 기존의 이미지 전체 특성추출기법이나 고정된 블록의 평균값으로 변경하여 저차원 데이터를 얻는 이미지 블록 특성추출기법은 유사 이미지의 검색이 부정확하다는 단점이 있다. 본 논문에서는 이미지를 가변적인 영역으로 나누어 특성값을 얻고, 히스토그램을 이용하여 효율적으로 유사 이미지를 찾는 영역기반 유사 이미지 검색기법을 제안하고 이를 구현하였다.

  • PDF

Wine Label Recognition System using Image Similarity (이미지 유사도를 이용한 와인라벨 인식 시스템)

  • Jung, Jeong-Mun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Kim, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.125-137
    • /
    • 2011
  • Recently the research on the system using images taken from camera phones as input is actively conducted. This paper proposed a system that shows wine pictures which are similar to the input wine label in order. For the calculation of the similarity of images, the representative color of each cell of the image, the recognized text color, background color and distribution of feature points are used as the features. In order to calculate the difference of the colors, RGB is converted into CIE-Lab and the feature points are extracted by using Harris Corner Detection Algorithm. The weights of representative color of each cell of image, text color and background color are applied. The image similarity is calculated by normalizing the difference of color similarity and distribution of feature points. After calculating the similarity between the input image and the images in the database, the images in Database are shown in the descent order of the similarity so that the effort of users to search for similar wine labels again from the searched result is reduced.

Content-based Image Retrieval Technique Using EHD and Lookup Table (EHD와 Lookup Table를 이용한 내용기반 이미지 검색 기법)

  • 신수연;김택곤;김우생
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.367-370
    • /
    • 2003
  • 최근 급속하게 증가하는 멀티미디어 정보를 효율적으로 다루기 위하여 멀티미디어 데이터에 대한 표현을 표준화하는 MPEG-7 표준안이 제정되었다 본 논문에서는 표준안의 Visual Descriptor 중 Edge Histogram Descriptor(EHD)에 기반한 효과적인 내용기반 이미지 검색 시스템을 설계한다. EHD의 경우 질의 이미지와 데이터베이스의 이미지 간의 유사도 연산을 통해 검색을 하는데 모든 이미지에 대해 연산을 수행하는 것은 비효율적이다. 저장된 에지 히스토그램 정보를 ‘이미지 당 빈 값’에서 ‘빈 값 당 이미지’ 정보로 매핑하는 Lookup Table를 이용하여 유사도 연산을 수행할 이미지 범위를 한정함으로써 검색 효율을 높일 수 있는 검색 방법을 제안한다.

  • PDF

A Design for Efficient Similar Subsequence Search with a Priority Queue and Suffix Tree in Image Sequence Databases (이미지 시퀀스 데이터베이스에서 우선순위 큐와 접미어 트리를 이용한 효율적인 유사 서브시퀀스 검색의 설계)

  • 김인범
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.613-624
    • /
    • 2003
  • This paper proposes a design for efficient and accurate retrieval of similar image subsequences using the multi-dimensional time warping distance as similarity evaluation tool in image sequence database after building of two indexing structures implemented with priority queue and suffix tree respectively. Receiving query image sequence, at first step, the proposed method searches the candidate set of similar image subsequences in priory queue index structure. If it can not get satisfied results, it retrieves another candidate set in suffix tree index structure at second step. The using of the low-bound distance function can remove the dissimilar subsequence without false dismissals during similarity evaluating process between query image sequence and stored sequences in two index structures.

  • PDF