• Title/Summary/Keyword: 이미지 예측 모델

Search Result 212, Processing Time 0.025 seconds

Experimental Investigation on the Droplet Entrainment in the Air-Water Horizontal Stratified Flow (물-공기 수평 성층류 유동조건에서 액적이탈 현상에 대한 실험연구)

  • Bae, Byeong Geon;Yun, Byong Jo;Kim, Kyoung Doo;Bae, Byoung Uhn
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.114-122
    • /
    • 2015
  • In the high convective gas flow condition, irregular shaped water waves from which droplet entrainment occurs are generated under horizontally stratified two-phase flow condition. KAERI proposed a new mechanistic droplet entrainment model based on the momentum balance equation consisting of the shear stress, surface tension, and gravity forces. However, this model requires correlation or experimental data of several physical parameters related to the wave characteristics. In the present study, we tried to measure the physical parameters such as wave slope, wave hypotenuse length, wave velocity, wave frequency, and wavelength experimentally. For this, an experiment was conducted in the horizontal rectangular channel of which width, height, and length are, respectively, 40 mm, 50 mm, and 4.2 m. In the present test, the working fluids are chosen as air and water. The PIV technique was applied not only to obtain images for phase interface waves but also to measure the velocity field of the water flow. Additionally, we developed the parallel wire conductance probe for the confirmation of wave height from PIV image. Finally, we measured the physical parameters to be used in the validation of new droplet entrainment model.

Scheduling System using CSP leer Effective Assignment of Repair Warrant Job (효율적인 A/S작업 배정을 위한 CSP기반의 스케줄링 시스템)

  • 심명수;조근식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.247-256
    • /
    • 2000
  • 오늘날의 기업은 상품을 판매하는 것 뿐만 아니라 기업의 신용과 이미지를 위해 그 상품에 대한 사후처리(After Service) 업무에 많은 투자를 하고 있다. 이러한 양질의 사후서비스를 고객에게 공급하기 위해서는 많은 인력을 합리적으로 관리해야 하고 요청되는 고장수리 서비스 업무를 빠르게 해결하기 위해서는 업무를 인력들에게 합리적으로 배정을 하고 회사의 비용을 최소화하면서 정해진 시간에 요청된 작업을 처리하기 위해서는 인력들에게 작업을 배정하고 스케줄링하는 문제가 발생된다. 본 논문에서는 이러한 문제를 해결하기 위해 화학계기의 A/S 작업을 인력에게 합리적으로 배정하는 스케줄링 시스템에 관한 연구이다. 먼저 스케줄링 모델을 HP 사의 화학분석 및 시스템을 판매, 유지보수 해 주는 "영진과학(주)"회사의 작업 스케줄을 분석하여 필요한 도메인과 고객서비스전략과 인력관리전략에서 제약조건을 추출하였고 여기에 스케줄링 문제를 해결하기 위한 방법으로 제약만족문제(CSP) 해결기법인 도메인 여과기법을 적용하였다. 도메인 여과기법은 제약조건에 의해 변수가 갖는 도메인의 불필요한 부분을 여과하는 것으로 제약조건과 관련되어 있는 변수의 도메인이 축소되는 것이다. 또한, 스케줄링을 하는데에 있어서 비용적인 측면에서의 스케줄링방법과 고객 만족도에서의 스케줄링 방법을 비교하여 가장 이상적인 해를 찾는데 트래이드오프(Trade-off)를 이용하여 최적의 해를 구했으며 실험을 통해 인력에게 더욱 효율적으로 작업들을 배정 할 수 있었고 또한, 정해진 시간에 많은 작업을 처리 할 수 있었으며 작업을 처리하는데 있어 소요되는 비용을 감소하는 결과를 얻을 수 있었다. 검증하였다.를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity

  • PDF

A Deep Learning Method for Cost-Effective Feed Weight Prediction of Automatic Feeder for Companion Animals (반려동물용 자동 사료급식기의 비용효율적 사료 중량 예측을 위한 딥러닝 방법)

  • Kim, Hoejung;Jeon, Yejin;Yi, Seunghyun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.263-278
    • /
    • 2022
  • With the recent advent of IoT technology, automatic pet feeders are being distributed so that owners can feed their companion animals while they are out. However, due to behaviors of pets, the method of measuring weight, which is important in automatic feeding, can be easily damaged and broken when using the scale. The 3D camera method has disadvantages due to its cost, and the 2D camera method has relatively poor accuracy when compared to 3D camera method. Hence, the purpose of this study is to propose a deep learning approach that can accurately estimate weight while simply using a 2D camera. For this, various convolutional neural networks were used, and among them, the ResNet101-based model showed the best performance: an average absolute error of 3.06 grams and an average absolute ratio error of 3.40%, which could be used commercially in terms of technical and financial viability. The result of this study can be useful for the practitioners to predict the weight of a standardized object such as feed only through an easy 2D image.

A Vision Transformer Based Recommender System Using Side Information (부가 정보를 활용한 비전 트랜스포머 기반의 추천시스템)

  • Kwon, Yujin;Choi, Minseok;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.119-137
    • /
    • 2022
  • Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.

Web-based Geovisualization System of Oceanographic Information using Dynamic Particles and HTML5 (동적 파티클과 HTML5를 이용한 웹기반 해양정보 가시화시스템)

  • Kim, Jinah;Kim, Sukjin
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.12
    • /
    • pp.660-669
    • /
    • 2017
  • In order to improve user accessibility and interactivity, system scalability, service speed, and a non-standard internet web environment, we developed a Web-based geovisualization system of oceanographic information using HTML5 and dynamic particles. In particular, oceanographic and meteorological data generated from a satellite remote sensing and radar measurement and a 3-dimensioanl numerical model, has the characteristics of a heterogeneous large-capacity multi-dimensional continuous spatial and temporal variability, based on geographic information. Considering those attributes, we applied dynamic particles represent the spatial and temporal variations of vector type oceanographic data. HTML5, WebGL, Canvas, D3, and Leaflet map libraries were also applied to handle various multimedia data, graphics, map services, and location-based service as well as to implement multidimensional spatial and statistical analyses such as a UV chart.

Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media (소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안)

  • Oh, Se-Jong;Kim, Kenneth Chi Ho
    • Cartoon and Animation Studies
    • /
    • s.44
    • /
    • pp.285-306
    • /
    • 2016
  • With the increase use of smartphones, users can consume contents such as webtoon, webnovel and TV drama directly provided by the producers. In this Direct-to-Consumer era, webdrama services from the portal websites are increasing rapidly. Webdramas such as , , and can be analyzed in real time using responses such as unique users, likes, and comments. The analyses used in this research were Social Media Big Data Mining Method and Opinion Mining Method. Specific key words from webdrama can be extracted and viewers positive, neutral or negative emotion can be predicted from the words. The analyses of popular webdramas showed that the established K-Pop Idol member appearance and servicing portal site greatly influence the views, traffics, comments, and likes. Also, 'Mobile TV' proved the effectiveness as another platform other than television. Mobile targeted contents and robust business models still to be developed and identified. Overcoming these few tasks, Korea will be proven to be a webdrama content powerhouse.

Pedestrian and Vehicle Distance Estimation Based on Hard Parameter Sharing (하드 파라미터 쉐어링 기반의 보행자 및 운송 수단 거리 추정)

  • Seo, Ji-Won;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.389-395
    • /
    • 2022
  • Because of improvement of deep learning techniques, deep learning using computer vision such as classification, detection and segmentation has also been used widely at many fields. Expecially, automatic driving is one of the major fields that applies computer vision systems. Also there are a lot of works and researches to combine multiple tasks in a single network. In this study, we propose the network that predicts the individual depth of pedestrians and vehicles. Proposed model is constructed based on YOLOv3 for object detection and Monodepth for depth estimation, and it process object detection and depth estimation consequently using encoder and decoder based on hard parameter sharing. We also used attention module to improve the accuracy of both object detection and depth estimation. Depth is predicted with monocular image, and is trained using self-supervised training method.

Image Steganography for Securing Hangul Messages based on RS-box Hiding Model (RS-box 은닉 모델에 기반한 한글 메시지 보안을 위한 이미지 스테가노그래피)

  • Seon-su Ji
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2023
  • Since most of the information is transmitted through the network, eavesdropping and interception by a third party may occur. Appropriate measures are required for effective, secure and confidential communication in the network. Steganography is a technology that prevents third parties from detecting that confidential information is hidden in other media. Due to structural vulnerabilities, information protected by encryption and steganography techniques can be easily exposed to illegitimate groups. In order to improve the limitations of LSB where the simplicity and predictability of the hiding method exist, I propose a technique to improve the security of the message to be hidden based on PRNG and recursive function. To enhance security and confusion, XOR operation was performed on the result of selecting a random bit from the upper bits of the selected channel and the information transformed by the RS-box. PSNR and SSIM were used to confirm the performance of the proposed method. Compared to the reference values, the SSIM and PSNR of the proposed method were 0.9999 and 51.366, respectively, confirming that they were appropriate for hiding information.

Design and Implementation of Early Warning Monitoring System for Cross-border Mining in Open-pit Mines (노천광산의 월경 채굴 조기경보 모니터링시스템의 설계 및 구현)

  • Li Ke;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.25-41
    • /
    • 2024
  • For the scenario of open pit mining, at present, manual periodic verification is mainly carried out in China with the help of video surveillance, which requires continuous investment in labor cost and has poor timeliness. In order to solve this difficult problem of early warning and monitoring, this paper researches a spatialized algorithmic model and designs an early warning system for open-pit mine transboundary mining, which is realized by calculating the coordinate information of the mining and extracting equipments and comparing it with the layer coordinates of the approval range of the mines in real time, so as to realize the determination of the transboundary mining behavior of the mines. By taking the Pingxiang area of Jiangxi Province as the research object, after the field experiment, it shows that the system runs stably and reliably, and verifies that the target tracking accuracy of the system is high, which can effectively improve the early warning capability of the open-pit mines' overstepping the boundary, improve the timeliness and accuracy of mine supervision, and reduce the supervision cost.

Coexistence Direction of AI and Webtoon Artist

  • Bo-Ra Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • This study aims to identify the competencies required for webtoon artists to survive in the future era of AI commercialization. It explores the current and future use of AI in webtoons, and predicts the role of artists in the future webtoon industry. The study finds that AI will replace human workers in some areas, but human empathy-related fields can be sustained. Artist roles like story projectors, Visual directors, and AI editors were identified as potential models for the changing role of artists. To address terminology ambiguity, a three-step AI categorization mechanical type AI, humanoid type AI, and transcendent type AI was proposed for a more realistic separation of AI capabilities. The researcher suggested these findings as guidelines for developing skills in emerging artists or re-skilling existing ones, emphasizing collaboration with AI for mutual growth rather than a negative acceptance of new technology.