In the high convective gas flow condition, irregular shaped water waves from which droplet entrainment occurs are generated under horizontally stratified two-phase flow condition. KAERI proposed a new mechanistic droplet entrainment model based on the momentum balance equation consisting of the shear stress, surface tension, and gravity forces. However, this model requires correlation or experimental data of several physical parameters related to the wave characteristics. In the present study, we tried to measure the physical parameters such as wave slope, wave hypotenuse length, wave velocity, wave frequency, and wavelength experimentally. For this, an experiment was conducted in the horizontal rectangular channel of which width, height, and length are, respectively, 40 mm, 50 mm, and 4.2 m. In the present test, the working fluids are chosen as air and water. The PIV technique was applied not only to obtain images for phase interface waves but also to measure the velocity field of the water flow. Additionally, we developed the parallel wire conductance probe for the confirmation of wave height from PIV image. Finally, we measured the physical parameters to be used in the validation of new droplet entrainment model.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.247-256
/
2000
오늘날의 기업은 상품을 판매하는 것 뿐만 아니라 기업의 신용과 이미지를 위해 그 상품에 대한 사후처리(After Service) 업무에 많은 투자를 하고 있다. 이러한 양질의 사후서비스를 고객에게 공급하기 위해서는 많은 인력을 합리적으로 관리해야 하고 요청되는 고장수리 서비스 업무를 빠르게 해결하기 위해서는 업무를 인력들에게 합리적으로 배정을 하고 회사의 비용을 최소화하면서 정해진 시간에 요청된 작업을 처리하기 위해서는 인력들에게 작업을 배정하고 스케줄링하는 문제가 발생된다. 본 논문에서는 이러한 문제를 해결하기 위해 화학계기의 A/S 작업을 인력에게 합리적으로 배정하는 스케줄링 시스템에 관한 연구이다. 먼저 스케줄링 모델을 HP 사의 화학분석 및 시스템을 판매, 유지보수 해 주는 "영진과학(주)"회사의 작업 스케줄을 분석하여 필요한 도메인과 고객서비스전략과 인력관리전략에서 제약조건을 추출하였고 여기에 스케줄링 문제를 해결하기 위한 방법으로 제약만족문제(CSP) 해결기법인 도메인 여과기법을 적용하였다. 도메인 여과기법은 제약조건에 의해 변수가 갖는 도메인의 불필요한 부분을 여과하는 것으로 제약조건과 관련되어 있는 변수의 도메인이 축소되는 것이다. 또한, 스케줄링을 하는데에 있어서 비용적인 측면에서의 스케줄링방법과 고객 만족도에서의 스케줄링 방법을 비교하여 가장 이상적인 해를 찾는데 트래이드오프(Trade-off)를 이용하여 최적의 해를 구했으며 실험을 통해 인력에게 더욱 효율적으로 작업들을 배정 할 수 있었고 또한, 정해진 시간에 많은 작업을 처리 할 수 있었으며 작업을 처리하는데 있어 소요되는 비용을 감소하는 결과를 얻을 수 있었다. 검증하였다.를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity
Kim, Hoejung;Jeon, Yejin;Yi, Seunghyun;Kwon, Ohbyung
Journal of Intelligence and Information Systems
/
v.28
no.2
/
pp.263-278
/
2022
With the recent advent of IoT technology, automatic pet feeders are being distributed so that owners can feed their companion animals while they are out. However, due to behaviors of pets, the method of measuring weight, which is important in automatic feeding, can be easily damaged and broken when using the scale. The 3D camera method has disadvantages due to its cost, and the 2D camera method has relatively poor accuracy when compared to 3D camera method. Hence, the purpose of this study is to propose a deep learning approach that can accurately estimate weight while simply using a 2D camera. For this, various convolutional neural networks were used, and among them, the ResNet101-based model showed the best performance: an average absolute error of 3.06 grams and an average absolute ratio error of 3.40%, which could be used commercially in terms of technical and financial viability. The result of this study can be useful for the practitioners to predict the weight of a standardized object such as feed only through an easy 2D image.
Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.
In order to improve user accessibility and interactivity, system scalability, service speed, and a non-standard internet web environment, we developed a Web-based geovisualization system of oceanographic information using HTML5 and dynamic particles. In particular, oceanographic and meteorological data generated from a satellite remote sensing and radar measurement and a 3-dimensioanl numerical model, has the characteristics of a heterogeneous large-capacity multi-dimensional continuous spatial and temporal variability, based on geographic information. Considering those attributes, we applied dynamic particles represent the spatial and temporal variations of vector type oceanographic data. HTML5, WebGL, Canvas, D3, and Leaflet map libraries were also applied to handle various multimedia data, graphics, map services, and location-based service as well as to implement multidimensional spatial and statistical analyses such as a UV chart.
With the increase use of smartphones, users can consume contents such as webtoon, webnovel and TV drama directly provided by the producers. In this Direct-to-Consumer era, webdrama services from the portal websites are increasing rapidly. Webdramas such as , , and can be analyzed in real time using responses such as unique users, likes, and comments. The analyses used in this research were Social Media Big Data Mining Method and Opinion Mining Method. Specific key words from webdrama can be extracted and viewers positive, neutral or negative emotion can be predicted from the words. The analyses of popular webdramas showed that the established K-Pop Idol member appearance and servicing portal site greatly influence the views, traffics, comments, and likes. Also, 'Mobile TV' proved the effectiveness as another platform other than television. Mobile targeted contents and robust business models still to be developed and identified. Overcoming these few tasks, Korea will be proven to be a webdrama content powerhouse.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.389-395
/
2022
Because of improvement of deep learning techniques, deep learning using computer vision such as classification, detection and segmentation has also been used widely at many fields. Expecially, automatic driving is one of the major fields that applies computer vision systems. Also there are a lot of works and researches to combine multiple tasks in a single network. In this study, we propose the network that predicts the individual depth of pedestrians and vehicles. Proposed model is constructed based on YOLOv3 for object detection and Monodepth for depth estimation, and it process object detection and depth estimation consequently using encoder and decoder based on hard parameter sharing. We also used attention module to improve the accuracy of both object detection and depth estimation. Depth is predicted with monocular image, and is trained using self-supervised training method.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.2
/
pp.97-103
/
2023
Since most of the information is transmitted through the network, eavesdropping and interception by a third party may occur. Appropriate measures are required for effective, secure and confidential communication in the network. Steganography is a technology that prevents third parties from detecting that confidential information is hidden in other media. Due to structural vulnerabilities, information protected by encryption and steganography techniques can be easily exposed to illegitimate groups. In order to improve the limitations of LSB where the simplicity and predictability of the hiding method exist, I propose a technique to improve the security of the message to be hidden based on PRNG and recursive function. To enhance security and confusion, XOR operation was performed on the result of selecting a random bit from the upper bits of the selected channel and the information transformed by the RS-box. PSNR and SSIM were used to confirm the performance of the proposed method. Compared to the reference values, the SSIM and PSNR of the proposed method were 0.9999 and 51.366, respectively, confirming that they were appropriate for hiding information.
For the scenario of open pit mining, at present, manual periodic verification is mainly carried out in China with the help of video surveillance, which requires continuous investment in labor cost and has poor timeliness. In order to solve this difficult problem of early warning and monitoring, this paper researches a spatialized algorithmic model and designs an early warning system for open-pit mine transboundary mining, which is realized by calculating the coordinate information of the mining and extracting equipments and comparing it with the layer coordinates of the approval range of the mines in real time, so as to realize the determination of the transboundary mining behavior of the mines. By taking the Pingxiang area of Jiangxi Province as the research object, after the field experiment, it shows that the system runs stably and reliably, and verifies that the target tracking accuracy of the system is high, which can effectively improve the early warning capability of the open-pit mines' overstepping the boundary, improve the timeliness and accuracy of mine supervision, and reduce the supervision cost.
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.87-99
/
2024
This study aims to identify the competencies required for webtoon artists to survive in the future era of AI commercialization. It explores the current and future use of AI in webtoons, and predicts the role of artists in the future webtoon industry. The study finds that AI will replace human workers in some areas, but human empathy-related fields can be sustained. Artist roles like story projectors, Visual directors, and AI editors were identified as potential models for the changing role of artists. To address terminology ambiguity, a three-step AI categorization mechanical type AI, humanoid type AI, and transcendent type AI was proposed for a more realistic separation of AI capabilities. The researcher suggested these findings as guidelines for developing skills in emerging artists or re-skilling existing ones, emphasizing collaboration with AI for mutual growth rather than a negative acceptance of new technology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.