Journal of the Korea Society of Computer and Information
/
v.27
no.9
/
pp.191-203
/
2022
In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.3
/
pp.316-322
/
2014
A movie recommendation system is proposed to learn a preference model of a viewer by using multimodal features of a video content and their evoked implicit responses of the viewer in synchronized manner. In this system, facial expression, body posture, and physiological signals are measured to estimate the affective states of the viewer, in accordance with the stimuli consisting of low-level and affective features from video, audio, and text streams. Experimental results show that it is possible to predict arousal response, which is measured by electrodermal activity, of a viewer from auditory and text features in a video stimuli, for estimating interestingness on the video.
Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.
Journal of the Korean Society for Precision Engineering
/
v.15
no.10
/
pp.113-119
/
1998
Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.
뇌혈관은 평상시 뇌조직의 필요량보다 더 많은 혈류를 수송할 능력을 가지고 있는데 이를 뇌혈관 혈류예비력이라 한다. 뇌혈관이 특정한 요인에 의해 협착이 생기면 뇌관류압이 감소하는데 이를 보상하기 위해 뇌세동맥의 내경을 확장시켜 뇌혈류를 유지하도록 하는 것이다. 따라서 예비력이 낮은 사람일 경우 협착으로 인해 혈관 내경이 좁아져 있다면 운동이나 스트레스 상황에서 뇌졸증 내지 뇌허혈의 위험이 증가된다. 따라서 본 연구팀은 컴퓨터 시뮬레이션을 통해 뇌혈관 협착으로 인한 예비능 감소를 예측하였다. 이를 위해 환자의 MRA 영상 이미지를 영역화하여 3차원 격자를 생성하였으며 생성된 환자 맞춤 모델을 대상으로 전산유체해석을 진행하였다. 그리고 가상 협착을 모델에 적용하여 뇌혈관 협착률과 예비능의 관계를 분석했다.
신경 진동자는 이미지정보의 해석, 음성인식, 지질 변화 예측 등의 진동하는 시스템에 응용되어진다. 이러한 진동하는 시스템에 기존의 역전파 알고리즘을 이용하는 경우, 복잡 다양한 입력 패턴을 추정하기가 어려우므로 학습단계에서 더 많은 양의 학습 데이터가 필요하게 되며 수렴 속도의 지연과 근사화가 어렵다. 따라서 본 논문에서는 모델에 대한 함수의 근사화가 쉬우며 학습하는 구조를 가지는 신경 진동자에 의한 위상 동기화 특성을 연구하고 이를 이용한 한글 문자 인식시스템을 구현하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.270-272
/
2021
최근 영상신호처리에 대한 딥러닝 기술이 비약적으로 발전함에 따라 다양한 방면으로 시도되고 있다. 그 중 machine level vision 에서 인지 기능을 하는 optical flow 를 end-to-end 학습 방식으로 제시하여 고성능 결과물을 도출하는 RAFT(Recurrent All-pairs Field Transform for Optical flow, 2020)에 대해 분석하고자 한다. RAFT 는 입력된 두 이미지에 대한 4D correlation volume 을 구축하여 모든 픽셀에 대한 정보를 사용한다. 또한, recurrent neural network 에서 차용한 반복적인 연산 학습 구조를 통하여 결과물인 flow field 의 정확도를 높인다. 해당 모델은 stereo dataset 을 사용하는 다른 모델에 비해 학습 시간이 짧고 용량이 작으면서 error rate 은 낮은 모습을 보인다. 현재 많은 연구에서 optical flow 를 접목하려는 움직임을 보이고 있고 다양하게 활용될 가능성이 다분하다는 점에서 주목할 가치가 있다.
최근 악플에 대한 논란이 끊이지 않고 있어 이것을 해결하기위한 방법으로 자연어 처리를 이용하고 있다. 특히 소셜 미디어, 온라인 커뮤니티에서 많이 발생하고 있고 해당 매체에서는 한글을 그대로 사용하지 않고 그들의 은어를 섞어서 사용하며 그중에서 한글이 아닌 문자를 섞어서 만들어낸 문장도 있다. 이러한 문장은 기존의 모델에 학습된 데이터의 형태와 다르며 한글이 아닌 문장이 많을수록 모델의 예측이 부정확해진다는 단점이 있어 본 논문에서는 인공지능을 이용한 이미지 분류와 띄어쓰기, 오타 교정을 이용한 전처리 기법을 제안한다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.97-98
/
2022
코로나바이러스-19 팬데믹 이후 매일 수만 명의 환자가 발생하고 있다. 보건당국은 사람들의 생활 안전을 보호하기 위해 공항, 정류장 등 공공장소에서는 반드시 마스크를 착용하라고 지시하고 있다. 마스크를 착용하는 목적은 감염으로부터 신체를 보호하고 바이러스 전파와 확산을 막기 위한 것이다. 공공장소에서는 많은 인원에 대한 일괄적인 마스크 착용 검사를 하기 어렵고, 육안으로 확인하는 마스크 착용 검사 방법은 인파가 몰리는 장소에서 검사 효율이 떨어지며 누락되는 경우도 많이 발생한다. 본 연구에서는 입력 이미지에 존재하는 얼굴 영역을 YOLOv4와 YOLOv5 모델을 통해 예측하여 마스크의 착용 여부를 판단하되, 앙상블 기법을 적용하여 보다 효과적인 BB(Bounding Box) 추출 및 마스크 착용 탐지 기법을 적용한다. 따라서 공공장소의 마스크 착용실태를 효과적으로 모니터링 할 수 있는 방법을 제안한다.
Proceedings of the Korean Society of Crop Science Conference
/
2023.04a
/
pp.24-24
/
2023
현대화된 재배법은 작물의 생육을 위해 시설내부의 환경을 제어하고 실시간 센싱 정보를 저장하는 시스템을 구축하고 이를 활용하고 있으나, 작물의 생육·생장에 미치는 직접적인 영향에 대한 생육데이터 취득은 아직까지도 전문 재배사·농민이 수작업을 통해 조사되고 있다. 본 연구는 작물의 생육데이터 자동 취득을 위한 장치를 개발하고 이를 실용화하기 위한 정확도 측정 시험을 진행하였다. 실험을 위한 장치구성은 3D Depth 카메라(Intel D415)와 운용 PC이며 딥러닝 모델을 이용하여 작물의 세부기관을 자동으로 인식하는 모델을 포함한다. 장치는 다양한 재배환경의 작물 생육데이터 취득을 위하여 휴대용, 고정형, 로봇형 3가지 유형으로 개발하였고 측정 정확도 검증은 휴대용 생육측정장치를 활용하여 조사하였다. 이러한 연구를 통해 수작업이 아닌 영상에 의한 생육 데이터수집으로 작물의 생육정보(측정값+이미지)를 확보함으로써 환경데이터와 함께 객관적인 정보에 의한 작물의 생산량, 수확시기 등을 예측하는데 활용될 수 있을것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.