• Title/Summary/Keyword: 이미지 예측 모델

Search Result 212, Processing Time 0.025 seconds

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.191-203
    • /
    • 2022
  • In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.

A Viewer Preference Model Based on Physiological Feedback (CogTV를 위한 생체신호기반 시청자 선호도 모델)

  • Park, Tae-Suh;Kim, Byoung-Hee;Zhang, Byoung-Tak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.316-322
    • /
    • 2014
  • A movie recommendation system is proposed to learn a preference model of a viewer by using multimodal features of a video content and their evoked implicit responses of the viewer in synchronized manner. In this system, facial expression, body posture, and physiological signals are measured to estimate the affective states of the viewer, in accordance with the stimuli consisting of low-level and affective features from video, audio, and text streams. Experimental results show that it is possible to predict arousal response, which is measured by electrodermal activity, of a viewer from auditory and text features in a video stimuli, for estimating interestingness on the video.

A review of artificial intelligence based demand forecasting techniques (인공지능 기반 수요예측 기법의 리뷰)

  • Jeong, Hyerin;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.795-835
    • /
    • 2019
  • Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

뇌혈관의 혈류예비력 시뮬레이션 연구

  • Ryu, A-Jin;Lee, Gyeong-Eun;Bang, Hyeon-Gi;Lee, Jong-Ho;Park, Seon-Yeol;Sim, Eun-Bo
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.631-634
    • /
    • 2017
  • 뇌혈관은 평상시 뇌조직의 필요량보다 더 많은 혈류를 수송할 능력을 가지고 있는데 이를 뇌혈관 혈류예비력이라 한다. 뇌혈관이 특정한 요인에 의해 협착이 생기면 뇌관류압이 감소하는데 이를 보상하기 위해 뇌세동맥의 내경을 확장시켜 뇌혈류를 유지하도록 하는 것이다. 따라서 예비력이 낮은 사람일 경우 협착으로 인해 혈관 내경이 좁아져 있다면 운동이나 스트레스 상황에서 뇌졸증 내지 뇌허혈의 위험이 증가된다. 따라서 본 연구팀은 컴퓨터 시뮬레이션을 통해 뇌혈관 협착으로 인한 예비능 감소를 예측하였다. 이를 위해 환자의 MRA 영상 이미지를 영역화하여 3차원 격자를 생성하였으며 생성된 환자 맞춤 모델을 대상으로 전산유체해석을 진행하였다. 그리고 가상 협착을 모델에 적용하여 뇌혈관 협착률과 예비능의 관계를 분석했다.

  • PDF

Recognition of the Korean alphabet Using Neural Oscillator Phase model Synchronization (신경 진동자 위상모델의 동기화를 이용한 한글인식)

  • Kwon, Yong-Bum;Song, Hong-Jun;Park, Young-Sik;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2280-2282
    • /
    • 2003
  • 신경 진동자는 이미지정보의 해석, 음성인식, 지질 변화 예측 등의 진동하는 시스템에 응용되어진다. 이러한 진동하는 시스템에 기존의 역전파 알고리즘을 이용하는 경우, 복잡 다양한 입력 패턴을 추정하기가 어려우므로 학습단계에서 더 많은 양의 학습 데이터가 필요하게 되며 수렴 속도의 지연과 근사화가 어렵다. 따라서 본 논문에서는 모델에 대한 함수의 근사화가 쉬우며 학습하는 구조를 가지는 신경 진동자에 의한 위상 동기화 특성을 연구하고 이를 이용한 한글 문자 인식시스템을 구현하였다.

  • PDF

RAFT 를 이용한 딥러닝 기반 Optical flow 예측 방법 구현 및 고찰

  • Chae, Hyeonseok;Kim, Wonjun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.270-272
    • /
    • 2021
  • 최근 영상신호처리에 대한 딥러닝 기술이 비약적으로 발전함에 따라 다양한 방면으로 시도되고 있다. 그 중 machine level vision 에서 인지 기능을 하는 optical flow 를 end-to-end 학습 방식으로 제시하여 고성능 결과물을 도출하는 RAFT(Recurrent All-pairs Field Transform for Optical flow, 2020)에 대해 분석하고자 한다. RAFT 는 입력된 두 이미지에 대한 4D correlation volume 을 구축하여 모든 픽셀에 대한 정보를 사용한다. 또한, recurrent neural network 에서 차용한 반복적인 연산 학습 구조를 통하여 결과물인 flow field 의 정확도를 높인다. 해당 모델은 stereo dataset 을 사용하는 다른 모델에 비해 학습 시간이 짧고 용량이 작으면서 error rate 은 낮은 모습을 보인다. 현재 많은 연구에서 optical flow 를 접목하려는 움직임을 보이고 있고 다양하게 활용될 가능성이 다분하다는 점에서 주목할 가치가 있다.

  • PDF

Preprocessing technique for natural language processing considering the form of characters used in malicious comments (악성 댓글에 사용된 문자의 형태를 고려한 한국어 자연어처리를 위한 전처리 기법)

  • Kim, Hae-Soo;Kim, Mi-hui
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.543-545
    • /
    • 2022
  • 최근 악플에 대한 논란이 끊이지 않고 있어 이것을 해결하기위한 방법으로 자연어 처리를 이용하고 있다. 특히 소셜 미디어, 온라인 커뮤니티에서 많이 발생하고 있고 해당 매체에서는 한글을 그대로 사용하지 않고 그들의 은어를 섞어서 사용하며 그중에서 한글이 아닌 문자를 섞어서 만들어낸 문장도 있다. 이러한 문장은 기존의 모델에 학습된 데이터의 형태와 다르며 한글이 아닌 문장이 많을수록 모델의 예측이 부정확해진다는 단점이 있어 본 논문에서는 인공지능을 이용한 이미지 분류와 띄어쓰기, 오타 교정을 이용한 전처리 기법을 제안한다.

Mask detection in complex scenes using an ensemble of YOLO models (YOLO 모델 앙상블을 이용한 복잡한 장면에서의 Mask Detection 기법)

  • Hu, Xufeng;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.97-98
    • /
    • 2022
  • 코로나바이러스-19 팬데믹 이후 매일 수만 명의 환자가 발생하고 있다. 보건당국은 사람들의 생활 안전을 보호하기 위해 공항, 정류장 등 공공장소에서는 반드시 마스크를 착용하라고 지시하고 있다. 마스크를 착용하는 목적은 감염으로부터 신체를 보호하고 바이러스 전파와 확산을 막기 위한 것이다. 공공장소에서는 많은 인원에 대한 일괄적인 마스크 착용 검사를 하기 어렵고, 육안으로 확인하는 마스크 착용 검사 방법은 인파가 몰리는 장소에서 검사 효율이 떨어지며 누락되는 경우도 많이 발생한다. 본 연구에서는 입력 이미지에 존재하는 얼굴 영역을 YOLOv4와 YOLOv5 모델을 통해 예측하여 마스크의 착용 여부를 판단하되, 앙상블 기법을 적용하여 보다 효과적인 BB(Bounding Box) 추출 및 마스크 착용 탐지 기법을 적용한다. 따라서 공공장소의 마스크 착용실태를 효과적으로 모니터링 할 수 있는 방법을 제안한다.

  • PDF

비파괴 작물 생육측정장치 개발 및 활용방법

  • 정수호;이형석;조혜성;조연진;안호섭;정종모;김희곤
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.24-24
    • /
    • 2023
  • 현대화된 재배법은 작물의 생육을 위해 시설내부의 환경을 제어하고 실시간 센싱 정보를 저장하는 시스템을 구축하고 이를 활용하고 있으나, 작물의 생육·생장에 미치는 직접적인 영향에 대한 생육데이터 취득은 아직까지도 전문 재배사·농민이 수작업을 통해 조사되고 있다. 본 연구는 작물의 생육데이터 자동 취득을 위한 장치를 개발하고 이를 실용화하기 위한 정확도 측정 시험을 진행하였다. 실험을 위한 장치구성은 3D Depth 카메라(Intel D415)와 운용 PC이며 딥러닝 모델을 이용하여 작물의 세부기관을 자동으로 인식하는 모델을 포함한다. 장치는 다양한 재배환경의 작물 생육데이터 취득을 위하여 휴대용, 고정형, 로봇형 3가지 유형으로 개발하였고 측정 정확도 검증은 휴대용 생육측정장치를 활용하여 조사하였다. 이러한 연구를 통해 수작업이 아닌 영상에 의한 생육 데이터수집으로 작물의 생육정보(측정값+이미지)를 확보함으로써 환경데이터와 함께 객관적인 정보에 의한 작물의 생산량, 수확시기 등을 예측하는데 활용될 수 있을것으로 예상된다.

  • PDF