• 제목/요약/키워드: 이미지 분할

검색결과 612건 처리시간 0.025초

히스토그램 분포 분류를 통한 효율적인 세포 이미지 분할 시스템 (An Efficient Segmentation System for Cell Images By Classifying Distributions of Histogram)

  • 조미경
    • 한국정보통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.431-436
    • /
    • 2014
  • 세포 분할 작업은 세포 이미지의 배경으로부터 세포 영역을 추출하는 작업으로 배양과정에 있는 살아있는 세포를 이미지화하여 분석하는 바이오 이미징 분야에서 기초적인 작업들 중 하나이다. 선명한 이미지의 경우 바이모덜 히스토그램 분포를 가지므로 Otsu와 같은 전역임계값 알고리즘을 이용하여 쉽게 세포분할 작업을 수행할 수 있지만 희미한 이미지의 경우는 정확한 세포 분할을 하기가 어렵다. 본 논문에서는 입력된 세포이미지의 히스토그램을 분석하여 히스토그램 분포에 따라 분류한 후 바이모덜 분포를 가지는 이미지의 경우 전역임계값 알고리즘을 적용하고 유니모덜 분포를 가지는 이미지의 경우 영역을 분할하여 부분 영역별로 다른 임계값을 적용하는 새포 분할 시스템을 개발하였다. 실험결과 제안한 시스템은 바이모덜 분포를 가지는 세포이미지 뿐만 아니라 유니모덜 분포를 가지는 세포 이미지에 대해서도 정확한 세포 분할 작업을 수행하였다.

객체 기반 이미지 분할에 관한 연구 (A Study On Object-based Image Segmentation)

  • 임희석;박기홍
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.210-214
    • /
    • 2002
  • 본 논문에서는 효율적인 이미지 분할을 위한 객체지향 모델링 방법을 제시한다. 이를 위하여 분할 객체와 자료구조를 제시하며 각각의 객체들을 위한 클래스 계층 구조를 나타낸다. 또한 객체의 부분에 대한 계층구조는 물론 객체의 기하학적인 표현을 위한 표현 클래스도 제시한다. 결론적으로 이미지 객체에 대한 시스템 독립적 이미지 분할을 위한 클래스 계층 구조를 객체지향 방법으로 제시하였다.

  • PDF

Color Morphological Pyramids를 이용한 이미지 분할 (Image Segmentation Using Color Morphological Pyramids)

  • 이석기;최은희;김석태
    • 한국정보통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.789-795
    • /
    • 2002
  • 컬러 이미지는 Gray Scale 이미지와는 달리 3가지 채널의 조합으로 이루어지고 방대한 정보량 때문에 효과적인 이미지 분할이 어렵다. 본 논문에서는 범용성 있는 Color Morphological Pyramids(CMP)구조를 제안하고, 그를 이용한 이미지 분할을 보인다. 이미지 피라미드 구조는 최초 이미지의 반복적인 필터링과 샘플링에 의해 면적비가 $2^{\int}({\int}=1,2,....,N)$이 되는 순차적 이미지 계열이다. 본 방법에서는 CMP를 이용하여 RGB, HSI, CMY 등의 컬러 공간에서 연속적인 필터링 처리로 불필요한 크기의 물체 및 잡음을 제거하고, 다운샘플링과정으로 해상도를 낮춰준다. 생성된 CMP에서 인접 레벨 이미지간에는 이웃한 픽셀 벡터간의 상대거리를 이용한 연결식을 사용하여 새 레벨의 이미지를 생성한 후 이를 이미지 분할한다. 이미지 분할실험을 통하여 본 방법의 유효성을 검증한다.

사분트리 분할 인덱스를 이용한 컬러이미지 검색 (Color Image Retrieval using Quad-tree Segmentation Index)

  • 오석영;홍성용;나연묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.175-177
    • /
    • 2004
  • 최근, 이미지 검색기법에서는 객체추출 방법이나 관심영역 추출방법에 관한 연구가 활발히 이루어지고 있다. 그러나, 컬러 이미지의 경우 색상을 고려한 관심영역 특징추출 방법이나 인덱스 기법은 많이 연구되지 못하고 있다. 따라서, 본 논문에서는 컬러 이미지의 색상을 기반으로 하는 사분트리 분할 인덱스 기법을 제안한다. 사분트리 분할 인덱스 구조는 컬러 이미지의 공간 영역을 계층적인 영역으로 분할하여 각 공간 영역의 평균 색상 갓을 데이터베이스에 저장한다 저장되어진 각 영역의 평균 색상은 검색의 효율성을 높이기 위해 사분트리 인스턴스(Quad-tree distance)를 퍼지 값으로 계산하여 인덱스를 생성한다. 생성된 사분트리 분할 인덱스는 컬러 이미지의 관심영역(Region of Interest)의 색상을 검색할 때 유용하게 사용되며. 검색속도의 향상에 도움을 준다.

  • PDF

자동 팔 영역 분할과 배경 이미지 합성 (Automatic Arm Region Segmentation and Background Image Composition)

  • 김동현;박세훈;서영건
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1509-1516
    • /
    • 2017
  • 일인칭 관점의 훈련 시스템에서, 사용자는 실제적인 경험을 필요로 하는데, 이런 실제적인 경험을 제공하기 위하여 가상의 이미지 또는 실제의 이미지를 동시에 제공해야 한다. 이를 위해 본 논문에서는 자동적으로 사람의 팔을 분할하는 것과 이미지 합성 방법을 제안한다. 제안 방법은 팔 분할 부분과 이미지 합성 부분으로 구성된다. 팔 분할은 임의의 이미지들을 입력으로 받아서 팔을 분할하고 알파 매트(alpha matte)를 출력한다. 이는 종단 간 학습이 가능한데 이 부분에서 우리는 FCN(Fully Convolutional Network)을 활용했기 때문이다. 이미지 합성부분은 팔 분할의 결과와 길과 건물 같은 다른 이미지와의 이미지 조합을 만들어 낸다. 팔 분할 부분에서 네트워크를 훈련시키기 위하여, 훈련 데이터는 전체 비디오 중에서 팔의 이미지를 잘라내어 사용하였다.

WAP 환경에서의 이미지 분할 관리 기법 (Image Division Control Under the WAP Environments)

  • 김준한;김영웅
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.391-394
    • /
    • 2000
  • 무선인터넷 분야는 전송속도 및 서비스를 제공받는 단말기의 특성상 콘텐츠 크기의 제약을 가지다. 그 크기란 현재 무선기기의 전송속도에 의해 정해진 것으로 앞으로 더 높은 전송속도를 가지게 된다면 상관없겠지만, 현재는 이 전송량의 한계 때문에 거의 대부분의 콘텐츠들은 이미지보다는 상대적으로 크기가 적은 텍스트 기반으로 설계되고 만들어지고 있다. 하지만, 이미지를 기반으로 하는 게임 응용분야의 경우 이와 같은 제약으로 인해 상대적으로 작은 이미지만으로 구현하고 있다. 본 논문은 현재의 콘텐츠 제약에 따르면서, 큰 이미지를 일정 패턴을 갖는 다수의 작은 이미지로 분할하는 기법을 통해 상대적으로 적은 데이터 전송량으로 이미지를 처리할 수 있는 이미지 기반의 사용자 인터페이스를 제작할 수 있는 이미지 분할 관리 기법을 제안하고, 실제 게임 구현을 통해 그 실용성을 보여준다.

  • PDF

칼라이미지의 영역분할을 위한 두 알고리즘의 비교분석 (Comparative Analyses of Two Algorithms for Region Segmentation of Color Image)

  • 허민권;성병우;최흥국;김상균;서정욱
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.83-88
    • /
    • 1998
  • 칼라이미지를 인식 및 분석을 하기 위해서는 이미지에 대한 영역분할이 우선적으로 먼저 이루어져야 되므로, 본 연구에서는 영역분할에 대한 두 개의 알고리즘을 구현하여 비교 분석하였다. 여러 가지 영역분할 방법 중에서 가장 쉽게 적용할 수 있고 또 가장 빠르게 영역을 분할 할 수 있는 Box classification 알고리즘을 이용하여 심근조직 표본의 현미경 영상이미지에 대해서 육안으로 선택한 영역과 histogram을 미분하여 최저 값에 문턱치를 정하여 줌으로써 선택한 영역에 대해 추출하고 이들 각각을 HLS 칼라모델에서 비교 분석하였다.

  • PDF

휘도 변화량 정보를 이용한 HDR 이미지 분할 기법을 통한 지역별 톤 매핑 기법 (Region-wise Tone Mapping Operator for Decomposed High Dynamic Range Image using Luminance Gradient Information)

  • 위승우;박대준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.211-214
    • /
    • 2016
  • 본 논문에서는 하나의 넓은 동적 영역(High Dynamic Range: HDR)을 갖는 이미지를 Earth Mover's Distance(EMD)값을 이용한 이미지 분할 기법을 적용한 유사 지역 그룹화를 통해, 각 그룹별로 톤 매핑을 수행하는 기법을 제안하고자 한다. 기존의 EMD 값을 통한 이미지 분할 알고리듬은 이미지 내의 같은 그룹으로 분류된 지역에서 휘도(luminance)의 변화가 클 때 후광 현상(halo artifact)이 발생하는 문제점을 보였다. 본 논문에서는 기존의 알고리듬으로 분할된 이미지를 처리할 때 휘도 변화량(gradient)의 정보를 활용하여 후광 현상 제거함으로써 주관적 화질을 향상시켰다.

  • PDF

양방향 특징 결합을 이용한 효율적 문자 탐지 모델 (An Efficient Text Detection Model using Bidirectional Feature Fusion)

  • 임성택;최회련;이홍철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.67-68
    • /
    • 2021
  • 기존 객체탐지는 경계 상자 회귀방식을 적용하였지만, 문자는 왜곡과 변형이 심한 특성을 가진 객체로 U-net 구조의 이미지 분할 방식을 사용하는 경우가 많다. 따라서 최근 문자 탐지는 통계적 모델에 비해 높은 정확도를 보이는 심층 신경망 기반의 모델 연구가 많이 진행되고 있다. 본 연구에서는 이미지 분할을 통한 양방향 특징 결합 기법을 사용한 문자 탐지 모델을 제안한다. 이미지 분할 방식은 메모리의 효율이 떨어지기 때문에 이를 극복하고자 특징 추출 단계에서 경량화된 네트워크를 적용하였다. 또한, 객체 탐지에서 큰 성과를 보인 양방향 특징 결합 모듈을 U-net 구조에 추가하여 추출된 특징이 효과적으로 결합 되는 결과를 얻었다. 제안하는 모델의 문자 탐지 성능은 합성 문자 데이터셋을 이용한 실험을 통해 기존의 U-net 구조의 이미지 분할 방식보다 향상되었음을 확인하였다.

  • PDF

Unet-VGG16 모델을 활용한 순환골재 마이크로-CT 미세구조의 천연골재 분할 (Segmentation of Natural Fine Aggregates in Micro-CT Microstructures of Recycled Aggregates Using Unet-VGG16)

  • 홍성욱;문덕기;김세윤;한동석
    • 한국전산구조공학회논문집
    • /
    • 제37권2호
    • /
    • pp.143-149
    • /
    • 2024
  • 이미지 분석을 통한 재료의 상 구분은 재료의 미세구조 분석을 위해 필수적이다. 이미지 분석에 주로 사용되는 마이크로-CT 이미지는 대체로 재료를 구성하고 있는 상에 따라 회색조 값이 다르게 나타나므로 이미지의 회색조 값 비교를 통해 상을 구분한다. 순환골재의 고체상은 수화된 시멘트풀과 천연골재로 구분되는데, 시멘트풀과 천연골재는 CT이미지 상에서 유사한 회색조 분포를 보여 상을 구분하기 어렵다. 본 연구에서는 Unet-VGG16 네트워크를 활용하여 순환골재 CT 이미지로부터 천연골재를 분할하는 자동화 방법을 제안하였다. 딥러닝 네트워크를 활용하여 2차원 순환골재 CT 이미지로부터 천연골재 영역을 분할하는 방법과 이를 3차원으로 적층하여 3차원 천연골재 이미지를 얻는 방법을 제시하였다. 선별된 3차원 천연골재 이미지에서 각각의 골재 입자를 분할하기 위해 이미지 필터링을 사용하였다. 골재 영역 분할 성능을 정확도, 정밀도, 재현율 F1 스코어를 통해 검증하였다.