The Journal of the Institute of Internet, Broadcasting and Communication
/
제18권5호
/
pp.171-177
/
2018
Recently there are many image datasets which has variety of data class and point to extract general features. But in order to this variety data class and point, deep learning model trained this dataset has not good performance in heterogeneous data feature local area. In this paper, we propose the structure which use sub-category and openset object detection methods to train more robust model, named multi-branch tree using ASSL. By using this structure, we can have more robust object detection deep learning model in heterogeneous data feature environment.
Seung-Bo Park;Min-Jun Kim;Guen-Mi Kim;Jeong-Tae Kim;Da-Ye Kim;Dong-Gyun Ham
Proceedings of the Korean Society of Computer Information Conference
/
한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
/
pp.493-494
/
2023
본 논문은 벚꽃나무 영상 데이터를 활용하여 벚꽃의 상태(개화, 만개, 낙화)를 실시간으로 분류하는 연구를 소개한다. 이 연구의 목적은, 실시간으로 취득되는 벚꽃나무의 영상 데이터를 사전에 학습된 CNN 기반 이미지 분류 모델을 통해 벚꽃의 상태에 따라 분류하는 것이다. 약 1,000장의 벚꽃나무 이미지를 활용하여 CNN 모델을 학습시키고, 모델이 새로운 이미지에 대해 얼마나 정확하게 벚꽃의 상태를 분류하는지를 평가하였다. 학습데이터는 훈련 데이터와 검증 데이터로 나누었으며, 개화, 만개, 낙화 등의 상태별로 폴더를 구분하여 관리하였다. 또한, ImageNet 데이터셋에서 사전 학습된 ResNet50 가중치를 사용하는 전이학습 방법을 적용하여 학습 과정을 더 효율적으로 수행하고, 모델의 성능을 향상시켰다.
피트니스 분야 인공지능 서비스의 성능 개선을 AI모델 개발이 아닌 데이터셋의 품질 개선을 통해 접근하는 방식을 제안하고, 데이터품질의 성능을 평가하는 것을 목적으로 한다. 데이터 설계는 각 분야 전문가 10명이 참여하였고, 단일 시점 영상을 이용한 운동동작 자동 분류에 사용된 모델은 Google의 MediaPipe 모델을 사용하였다. 팔굽혀펴기의 운동동작인식 정확도는 100%로 나타났으나 팔꿉치의 각도 15° 이하였을 때 동작의 횟수를 인식하지 않았고 이 결과 값에 대해 피트니스 전문가의 의견과 불일치하였다. 향후 연구에서는 동작인식의 분류뿐만 아니라 운동량을 연결하여 분석할 수 있는 시스템이 필요하다.
Proceedings of the Korean Society of Computer Information Conference
/
한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
/
pp.125-127
/
2021
본 논문에서는 목조 문화재의 변위 현상 중 하나인 크랙 현상을 감지할 수 있는 EfficientNet 기반 모델을 제안한다. 우선 사전 학습된 EfficientNet모델을 통해 학습 이미지로부터 심층 특징을 추출하고 크랙이 존재하는지 아닌지에 대해 분류하기 위한 완전 연결 신경망을 학습한다. 그런 다음 새로운 목조 문화재 이미지가 들어왔을 때 학습한 모델을 통해서 크랙이 존재하는지에 대해 최종적으로 판별하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 EfficientNet을 사용한 딥 러닝 기반 모델이 다른 사전 학습된 합성 곱 신경망 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재에서의 크랙 검출에 있어서 적합함을 보여준다.
This study aims to analyze movies which contain various stories according to the size of their shots. To achieve this, it is needed to classify dataset according to the shot size, such as extreme close-up shots, close-up shots, medium shots, full shots, and long shots. However, a typical video storytelling is mainly composed of close-up shots, medium shots, full shots, and long shots, it is not an easy task to construct an appropriate dataset for extreme close-up shots. To solve this, we propose an image cropping method based on the region of interest (ROI) detection. In this paper, we use the face detection and saliency detection to estimate the ROI. By cropping the ROI of close-up images, we generate extreme close-up images. The dataset which is enriched by proposed method is utilized to construct a model for classifying shots based on its size. The study can help to analyze the emotional changes of characters in video stories and to predict how the composition of the story changes over time. If AI is used more actively in the future in entertainment fields, it is expected to affect the automatic adjustment and creation of characters, dialogue, and image editing.
Park, Yesul;Kyeong, Seonjae;Kim, Minjun;Oh, Chanmi;Lee, Jeasung;Lee, Jaehwan;Lee, Hyunseung;Lee, Cheolhee;Moon, Hyeonjoon
Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송∙미디어공학회 2020년도 하계학술대회
/
pp.705-708
/
2020
공공시설에 대한 안전점검은 공공시설의 노후화에 따라 정기적인 검사의 필요성이 요구되고 있다. 기존의 안전점검 방식은 대부분 육안으로 점검하는 것에 의존하는데 이는 점검자의 숙련도에 따라 결과의 품질이 달라지게 된다. 본 논문에서는 XAI 기반의 공공시설물 건전도 안전검사 평가시스템을 제안하며, 이는 점검자의 숙련도와 무관하게 항상 같은 결과를 도출해 내며 XAI 를 통해 사용자에게 안전점검에 대한 결과를 제시해준다. 공공시설물 중 터널 시설물의 안전검사 평가시스템을 기반으로 하는 연구를 진행하였으며 이는 수정없이 교량 시설물 등 다른 공공시설물에 적용이 가능하다. 본 논문은 5 가지로 구분된다. 1) 터널 이미지와 균열에 마스크를 적용한 이미지 두 가지의 데이터 셋을 448x448 로 생성한다. 2) UNet 과 Resnet152 의 두 모델을 적용한 혼합 모델을 이용하여 생성한 데이터 셋을 훈련시킨다. 3) 훈련된 혼합 모델에서 생성된 분할 이미지에 대해 노이즈 제거 과정을 진행한다. 4) 노이즈 제거가 끝난 이미지에 스켈레톤화(Skeletonization)를 적용시켜 균열 이미지의 뼈대를 구한다. 뼈대 이미지 기반으로 균열의 길이, 두께, 위치등의 정보를 얻는다. 5) XAI 부분에서는 뼈대 이미지의 정보를 토대로 균열의 위치, 두께, 길이 등에 대해 계산을 진행한 후 사용자에게 제시해준다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송∙미디어공학회 2019년도 하계학술대회
/
pp.95-97
/
2019
본 논문에서는 비디오 데이터를 이용한 감독 학습 프레임 워크를 제안한다. 최근 Deep Convolutional Neural Networks의 성공으로 많은 분야에서 사용되고 있다. DCNNs 모델 성능의 중요한 요소 중 하나는 Large-cale Dataset을 구축하는 것으로 Small-scale Dataset으로 모델을 학습한다면 과적합 및 일반화 오류를 해결하기 어렵다. 이러한 문제점을 해결하는 방법으로 이미지 왜곡을 통한 데이터 셋을 증가 또는 Dropout 기법 등을 사용하였지만 원본 데이터가 적은 경우에는 모델이 일반화 능력을 갖기 어렵다. 따라서 본 논문에서는 이러한 문제점을 보완하고자 Web으로부터 얻은 비디오에서 해당 Class와 관련된 프레임들을 추출하여 보다 쉽게 데이터 셋을 확장하고, 모델의 성능을 향상 시키는 방법을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송∙미디어공학회 2020년도 추계학술대회
/
pp.18-20
/
2020
본 연구에서는 고차원 데이터에 대한 차원축소 및 군집 분석과 같은 비지도 학습 알고리즘에 대해 알아보기 위해서 얼굴 이미지 데이터 셋을 사용한다. 얼굴 데이터 셋에 대하여 주요 비지도 학습 알고리즘을 이용하여 실시간으로 클러스터링하고, 그 성능을 비교한다. 비디오에서 추출된 영상 속의 7명의 인물에 대하여 Scikit-learning 라이브러리에서 제공하는 클러스터링 알고리즘과 더불어 주요 차원축소 알고리즘(Dimension Reduction Algorithm)을 사용하여 총 10개의 알고리즘에 대하여 분석한다. 또한, 클러스터링 성능 검사를 통해 알고리즘의 성능을 비교해보고, 이를 통하여 앞으로의 연구 방향에 대해 고찰한다.
Lee, JoSun;Ko, Byeongguk;Kang, Eunsu;Choi, Hajin;Kim, Jun O;Lee, Byongkwon
Proceedings of the Korean Society of Computer Information Conference
/
한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
/
pp.347-349
/
2020
본 논문에서는 컴퓨팅 이미지 객체인식 시스템인 YOLO 성능 향상을 위한 효율적인 이미지 마킹 정책을 제안한다. 이 정책은 이미지 데이터를 통한 객체인식 학습 YOLO의 객체인식을 높이고 다른 객체와의 구분을 최대화하여 학습 모델의 성능을 높인다. YOLO의 성능을 최대화하기 위하여 YOLO의 학습을 몇 번 시킬 것인지 무엇을 객체로 인식시킬지 동적으로 할당한다. 이때 학습 싸이클에 따라 객체의 인식이 달라지며 어느 싸이클에서 가장 효율적인지, 왜 다른 객체를 같이 학습시켜야 하는지 중명한다. 본 논문에서는 YOLO의 싸이클과 다른 객체 학습에 있어서 최적의 객체인식 싸이클과 학습 성능 향상 면에서 우수함을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송∙미디어공학회 2019년도 추계학술대회
/
pp.124-127
/
2019
본 논문에서는 단일 이미지의 관심 영역에 기반한 저심도 후처리 방법을 제안한다. 저심도 이미지란 사진에서 초점이 선명하게 포착되는 깊이의 범위가 좁은 이미지를 말한다. 기존의 광학적 특성을 이용한 저심도 이미지를 만드는 과정은 물리적인 구조 설계비용 문제가 존재한다. 또한, 이미지의 후처리 보정을 통한 방법은 이미지상의 사물 깊이 정보를 알기 어렵기 때문에 이미지의 심도를 후처리하기 어려웠다. 이에 따라 본 논문에서는 슈퍼 픽셀 군집화 방법을 통해 관심 영역을 찾고, 이에 기반하여 관심 영역이 부각될 수 있는 저심도 후처리 방법을 제안한다. 제안하는 후처리 방법은 슈퍼픽셀 군집화 방법을 통해 관심영역을 설정하여 배경 영역을 분리하고 블러 과정을 수행한다. 관심 영역을 제외한 부분을 확장 한 뒤 배경 블러를 거치기 때문에 후광효과가 현저히 줄어든 저심도 효과가 적용된 이미지를 얻을 수 있었고 MSRA-1000 데이터 셋 이미지에서 우수한 주관적 화질 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.