• Title/Summary/Keyword: 이미지 기반 모델링

Search Result 137, Processing Time 0.03 seconds

A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction (NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.46-54
    • /
    • 2006
  • Recently, the important of a personal identification is increasing according to expansion using each on-line commercial transaction and personal ID-card. Although a personal ID-card embedded RFID(Radio Frequency Identification) tag is gradually increased, the way for a person's identification is deficiency. So we need automatic methods. Because RFID tag is vary small storage capacity of memory, it needs effective feature extraction method to store personal biometrics information. We need new recognition method to compare each feature. In this paper, we studied the face verification system using Hippocampal neuron modeling algorithm which can remodel the hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature vector of the face images very fast. and construct the optimized feature each image. The system is composed of two parts mainly. One is feature extraction using NMF(Non-negative Matrix Factorization) and LDA(Linear Discriminants Analysis) mixture algorithm and the other is hippocampal neuron modeling and recognition simulation experiments confirm the each recognition rate, that are face changes, pose changes and low-level quality image. The results of experiments, we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to the existing method.

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

Non-parametric Background Generation based on MRF Framework (MRF 프레임워크 기반 비모수적 배경 생성)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.405-412
    • /
    • 2010
  • Previous background generation techniques showed bad performance in complex environments since they used only temporal contexts. To overcome this problem, in this paper, we propose a new background generation method which incorporates spatial as well as temporal contexts of the image. This enabled us to obtain 'clean' background image with no moving objects. In our proposed method, first we divided the sampled frame into m*n blocks in the video sequence and classified each block as either static or non-static. For blocks which are classified as non-static, we used MRF framework to model them in temporal and spatial contexts. MRF framework provides a convenient and consistent way of modeling context-dependent entities such as image pixels and correlated features. Experimental results show that our proposed method is more efficient than the traditional one.

Fusing Algorithm for Dense Point Cloud in Multi-view Stereo (Multi-view Stereo에서 Dense Point Cloud를 위한 Fusing 알고리즘)

  • Han, Hyeon-Deok;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.798-807
    • /
    • 2020
  • As technologies using digital camera have been developed, 3D images can be constructed from the pictures captured by using multiple cameras. The 3D image data is represented in a form of point cloud which consists of 3D coordinate of the data and the related attributes. Various techniques have been proposed to construct the point cloud data. Among them, Structure-from-Motion (SfM) and Multi-view Stereo (MVS) are examples of the image-based technologies in this field. Based on the conventional research, the point cloud data generated from SfM and MVS may be sparse because the depth information may be incorrect and some data have been removed. In this paper, we propose an efficient algorithm to enhance the point cloud so that the density of the generated point cloud increases. Simulation results show that the proposed algorithm outperforms the conventional algorithms objectively and subjectively.

Comparative Study on Structural Behaviors of Skull in Occlusions for Class I and Full-CUSP Class II (정상 I급 교합과 Full-CUSP II급 교합의 두개골 구조거동 비교 해석연구)

  • Lee, Yeo-Kyeong;Park, Jae-Yong;Kim, Hee-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.309-315
    • /
    • 2016
  • Recently, finite element analysis technique has been widely used for structural and mechanical understandings of human body in the dentistry field. This research proposed an effective finite element modeling method based on CT images, and parametric studies were performed for the occlusal simulation. The analyses were performed considering linear material behaviors and nonlinear geometrical effect, and validated with the experimental results. In addition, the skull models with two different molar relations such as Class I and full-CUSP Class II were generated and the analyses were performed using the proposed analytical method. As results, the relationships between the mandibular movement and occlusal force of both two models showed similar tendency in human occlusal force. However, stress was evenly distributed from teeth to facial bone in the skull model with Class I, while stress concentration was appeared in the model with full-CUSP Class II due to the changes of occlusal surfaces of the model.

Digital Mapping and 3D Visualization of Tunnel Face Information under Construction (터널 시공중 굴착면 지질정보 디지털화 및 3D 가시화)

  • Kwon, Young-Ju;Lee, Cheong;Kim, Jin-Woung;Kim, Kwang-Yeom;Yim, Sung-Bin;Choi, Jai-Won
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.649-659
    • /
    • 2010
  • In this study, a tunnel information database system was developed to optimize the process of assessing and analyzing geological information from the life cycle of tunnel construction. All data from every stage in tunnel construction can be put into the system and be utilized for the decision making. In the system, tunnel face mapping information can be managed by digital format which can be easily transformed into 3D visualization module and thus help analyzing geological discontinuities. The system was applied to waterway and road tunnel in domestic area to verify its effectiveness.

Simulation of Heat and Smoke Behavior for Wood and Subway Fires by Fire Dynamics Simulator(FDS) (FDS에 의한 목재 및 지하철 화재의 열 및 연기 거동 시뮬레이션)

  • Sonh, Yun-Suk;Dan, Seung-Kyu;Lee, Bong-Woo;Kwon, Seong-Pil;Shin, Dong-Il;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, to propose the analysis method of heat and smoke behavior of fire using the CFD-based fire simulator FDS, comparison of the simulation results against the experimental results and the sensitivity of the results to the grid sizes have been investigated. For the wood fire, thermal images captured from the experiments were compared against the FDS simulations, and the maximum temperatures agreed in~4.3 % error, showing the applicability of FDS in the interpretation of the fire phenomena. In the aspect of the sensitivity to the grid size for the subway fire, FDS results of smoke temperature, CO concentration and visibility converged and showed no distinct changes for the grid size < $28(L){\times}28(W){\times}14(H)$, guaranteeing that the FDS fire model set in this research could interpret the fire phenomena successfully.

Estimation of river water depth using UAV-assisted RGB imagery and multiple linear regression analysis (무인기 지원 RGB 영상과 다중선형회귀분석을 이용한 하천 수심 추정)

  • Moon, Hyeon-Tae;Lee, Jung-Hwan;Yuk, Ji-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1059-1070
    • /
    • 2020
  • River cross-section measurement data is one of the most important input data in research related to hydraulic and hydrological modeling, such as flow calculation and flood forecasting warning methods for river management. However, the acquisition of accurate and continuous cross-section data of rivers leading to irregular geometric structure has significant limitations in terms of time and cost. In this regard, a primary objective of this study is to develop a methodology that is able to measure the spatial distribution of continuous river characteristics by minimizing the input of time, cost, and manpower. Therefore, in this study, we tried to examine the possibility and accuracy of continuous cross-section estimation by estimating the water depth for each cross-section through multiple linear regression analysis using RGB-based aerial images and actual data. As a result of comparing with the actual data, it was confirmed that the depth can be accurately estimated within about 2 m of water depth, which can capture spatially heterogeneous relationships, and this is expected to contribute to accurate and continuous river cross-section acquisition.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

Boosting the Performance of the Predictive Model on the Imbalanced Dataset Using SVM Based Bagging and Out-of-Distribution Detection (SVM 기반 Bagging과 OoD 탐색을 활용한 제조공정의 불균형 Dataset에 대한 예측모델의 성능향상)

  • Kim, Jong Hoon;Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.455-464
    • /
    • 2022
  • There are two unique characteristics of the datasets from a manufacturing process. They are the severe class imbalance and lots of Out-of-Distribution samples. Some good strategies such as the oversampling over the minority class, and the down-sampling over the majority class, are well known to handle the class imbalance. In addition, SMOTE has been chosen to address the issue recently. But, Out-of-Distribution samples have been studied just with neural networks. It seems to be hardly shown that Out-of-Distribution detection is applied to the predictive model using conventional machine learning algorithms such as SVM, Random Forest and KNN. It is known that conventional machine learning algorithms are much better than neural networks in prediction performance, because neural networks are vulnerable to over-fitting and requires much bigger dataset than conventional machine learning algorithms does. So, we suggests a new approach to utilize Out-of-Distribution detection based on SVM algorithm. In addition to that, bagging technique will be adopted to improve the precision of the model.