• Title/Summary/Keyword: 이미지 기계 학습

Search Result 172, Processing Time 0.031 seconds

Study on the Performance Evaluation of Encoding and Decoding Schemes in Vector Symbolic Architectures (벡터 심볼릭 구조의 부호화 및 복호화 성능 평가에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.229-235
    • /
    • 2024
  • Recent years have seen active research on methods for efficiently processing and interpreting large volumes of data in the fields of artificial intelligence and machine learning. One of these data processing technologies, Vector Symbolic Architecture (VSA), offers an innovative approach to representing complex symbols and data using high-dimensional vectors. VSA has garnered particular attention in various applications such as natural language processing, image recognition, and robotics. This study quantitatively evaluates the characteristics and performance of VSA methodologies by applying five VSA methodologies to the MNIST dataset and measuring key performance indicators such as encoding speed, decoding speed, memory usage, and recovery accuracy across different vector lengths. BSC and VT demonstrated relatively fast performance in encoding and decoding speeds, while MAP and HRR were relatively slow. In terms of memory usage, BSC was the most efficient, whereas MAP used the most memory. The recovery accuracy was highest for MAP and lowest for BSC. The results of this study provide a basis for selecting appropriate VSA methodologies depending on the application area.

A Study on the Air Pollution Monitoring Network Algorithm Using Deep Learning (심층신경망 모델을 이용한 대기오염망 자료확정 알고리즘 연구)

  • Lee, Seon-Woo;Yang, Ho-Jun;Lee, Mun-Hyung;Choi, Jung-Moo;Yun, Se-Hwan;Kwon, Jang-Woo;Park, Ji-Hoon;Jung, Dong-Hee;Shin, Hye-Jung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.57-65
    • /
    • 2021
  • We propose a novel method to detect abnormal data of specific symptoms using deep learning in air pollution measurement system. Existing methods generally detect abnomal data by classifying data showing unusual patterns different from the existing time series data. However, these approaches have limitations in detecting specific symptoms. In this paper, we use DeepLab V3+ model mainly used for foreground segmentation of images, whose structure has been changed to handle one-dimensional data. Instead of images, the model receives time-series data from multiple sensors and can detect data showing specific symptoms. In addition, we improve model's performance by reducing the complexity of noisy form time series data by using 'piecewise aggregation approximation'. Through the experimental results, it can be confirmed that anomaly data detection can be performed successfully.

2D Artificial Data Set Construction System for Object Detection and Detection Rate Analysis According to Data Characteristics and Arrangement Structure: Focusing on vehicle License Plate Detection (객체 검출을 위한 2차원 인조데이터 셋 구축 시스템과 데이터 특징 및 배치 구조에 따른 검출률 분석 : 자동차 번호판 검출을 중점으로)

  • Kim, Sang Joon;Choi, Jin Won;Kim, Do Young;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • Recently, deep learning networks with high performance for object recognition are emerging. In the case of object recognition using deep learning, it is important to build a training data set to improve performance. To build a data set, we need to collect and label the images. This process requires a lot of time and manpower. For this reason, open data sets are used. However, there are objects that do not have large open data sets. One of them is data required for license plate detection and recognition. Therefore, in this paper, we propose an artificial license plate generator system that can create large data sets by minimizing images. In addition, the detection rate according to the artificial license plate arrangement structure was analyzed. As a result of the analysis, the best layout structure was FVC_III and B, and the most suitable network was D2Det. Although the artificial data set performance was 2-3% lower than that of the actual data set, the time to build the artificial data was about 11 times faster than the time to build the actual data set, proving that it is a time-efficient data set building system.

Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment (SVM과 의사결정트리를 이용한 열악한 환경에서의 교통표지판 인식 알고리즘)

  • Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2014
  • Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

Contactless Data Society and Reterritorialization of the Archive (비접촉 데이터 사회와 아카이브 재영토화)

  • Jo, Min-ji
    • The Korean Journal of Archival Studies
    • /
    • no.79
    • /
    • pp.5-32
    • /
    • 2024
  • The Korean government ranked 3rd among 193 UN member countries in the UN's 2022 e-Government Development Index. Korea, which has consistently been evaluated as a top country, can clearly be said to be a leading country in the world of e-government. The lubricant of e-government is data. Data itself is neither information nor a record, but it is a source of information and records and a resource of knowledge. Since administrative actions through electronic systems have become widespread, the production and technology of data-based records have naturally expanded and evolved. Technology may seem value-neutral, but in fact, technology itself reflects a specific worldview. The digital order of new technologies, armed with hyper-connectivity and super-intelligence, not only has a profound influence on traditional power structures, but also has an a similar influence on existing information and knowledge transmission media. Moreover, new technologies and media, including data-based generative artificial intelligence, are by far the hot topic. It can be seen that the all-round growth and spread of digital technology has led to the augmentation of human capabilities and the outsourcing of thinking. This also involves a variety of problems, ranging from deep fakes and other fake images, auto profiling, AI lies hallucination that creates them as if they were real, and copyright infringement of machine learning data. Moreover, radical connectivity capabilities enable the instantaneous sharing of vast amounts of data and rely on the technological unconscious to generate actions without awareness. Another irony of the digital world and online network, which is based on immaterial distribution and logical existence, is that access and contact can only be made through physical tools. Digital information is a logical object, but digital resources cannot be read or utilized without some type of device to relay it. In that respect, machines in today's technological society have gone beyond the level of simple assistance, and there are points at which it is difficult to say that the entry of machines into human society is a natural change pattern due to advanced technological development. This is because perspectives on machines will change over time. Important is the social and cultural implications of changes in the way records are produced as a result of communication and actions through machines. Even in the archive field, what problems will a data-based archive society face due to technological changes toward a hyper-intelligence and hyper-connected society, and who will prove the continuous activity of records and data and what will be the main drivers of media change? It is time to research whether this will happen. This study began with the need to recognize that archives are not only records that are the result of actions, but also data as strategic assets. Through this, author considered how to expand traditional boundaries and achieves reterritorialization in a data-driven society.

Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning (CNN을 이용한 딥러닝 기반 하수관 손상 탐지 분류 시스템)

  • Hassan, Syed Ibrahim;Dang, Lien-Minh;Im, Su-hyeon;Min, Kyung-bok;Nam, Jun-young;Moon, Hyeon-joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.451-457
    • /
    • 2018
  • We propose an automatic detection and classification system of sewer damage database based on artificial intelligence and deep learning. In order to optimize the performance, we implemented a robust system against various environmental variations such as illumination and shadow changes. In our proposed system, a crack detection and damage classification method using a deep learning based Convolutional Neural Network (CNN) is implemented. For optimal results, 9,941 CCTV images with $256{\times}256$ pixel resolution were used for machine learning on the damaged area based on the CNN model. As a result, the recognition rate of 98.76% was obtained. Total of 646 images of $720{\times}480$ pixel resolution were extracted from various sewage DB for performance evaluation. Proposed system presents the optimal recognition rate for the automatic detection and classification of damage in the sewer DB constructed in various environments.

Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM (이미지 기반 기계 학습과 BIM을 활용한 자동화된 시공 진도 관리 - 합성곱 신경망 모델(CNN)과 실내측위기술, 4D BIM을 기반으로 -)

  • Rho, Juhee;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.11-19
    • /
    • 2020
  • A daily progress monitoring and further schedule management of a construction project have a significant impact on the construction manager's decision making in schedule change and controlling field operation. However, a current site monitoring method highly relies on the manually recorded daily-log book by the person in charge of the work. For this reason, it is difficult to take a detached view and sometimes human error such as omission of contents may occur. In order to resolve these problems, previous researches have developed automated site monitoring method with the object recognition-based visualization or BIM data creation. Despite of the research results along with the related technology development, there are limitations in application targeting the practical construction projects due to the constraints in the experimental methods that assume the fixed equipment at a specific location. To overcome these limitations, some smart devices carried by the field workers can be employed as a medium for data creation. Specifically, the extracted information from the site picture by object recognition technology of CNN model, and positional information by GIPS are applied to update 4D BIM data. A standard CNN model is developed and BIM data modification experiments are conducted with the collected data to validate the research suggestion. Based on the experimental results, it is confirmed that the methods and performance are applicable to the construction site management and further it is expected to contribute speedy and precise data creation with the application of automated progress monitoring methods.

A Study on the Development of a Program for Predicting Successful Welding of Electric Vehicle Batteries Using Laser Welding (레이저 용접을 이용한 전기차 배터리 이종접합 성공 확률 예측 프로그램 개발에 관한 연구)

  • Cheol-Hwan Kim;Chan-Su Moon;Kwan-Su Lee;Jin-Su Kim;Ae-Ryeong Jo;Bo-Sung Shin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.44-49
    • /
    • 2023
  • In the global pursuit of carbon neutrality, the rapid increase in the adoption of electric vehicles (EVs) has led to a corresponding surge in the demand for batteries. To achieve high efficiency in electric vehicles, considerations of weight reduction and battery safety have become crucial factors. Copper and aluminum, both recognized as lightweight materials, can be effectively joined through laser welding. However, due to the distinct physical characteristics of these two materials, the process of joining them poses technical challenges. This study focuses on conducting simulations to identify the optimal laser parameters for welding copper and aluminum, with the aim of streamlining the welding process. Additionally, a Graphic User Interface (GUI) program has been developed using the Python language to visually present the results. Using machine learning image data, this program is anticipated to predict joint success and serve as a guide for safe and efficient laser welding. It is expected to contribute to the safety and efficiency of the electric vehicle battery assembly process.