• 제목/요약/키워드: 이미지 결함 검출

검색결과 361건 처리시간 0.03초

EfficientNet 모델을 사용한 목조 문화재의 크랙 감지 (A Crack Detection of Wooden Cultural Assets using EfficientNet model)

  • 강재용;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.125-127
    • /
    • 2021
  • 본 논문에서는 목조 문화재의 변위 현상 중 하나인 크랙 현상을 감지할 수 있는 EfficientNet 기반 모델을 제안한다. 우선 사전 학습된 EfficientNet모델을 통해 학습 이미지로부터 심층 특징을 추출하고 크랙이 존재하는지 아닌지에 대해 분류하기 위한 완전 연결 신경망을 학습한다. 그런 다음 새로운 목조 문화재 이미지가 들어왔을 때 학습한 모델을 통해서 크랙이 존재하는지에 대해 최종적으로 판별하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 EfficientNet을 사용한 딥 러닝 기반 모델이 다른 사전 학습된 합성 곱 신경망 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재에서의 크랙 검출에 있어서 적합함을 보여준다.

  • PDF

객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델 (An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation)

  • 강재용;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

무인항공기를 이용한 딥러닝 기반의 소나무재선충병 감염목 탐지 (Pine Wilt Disease Detection Based on Deep Learning Using an Unmanned Aerial Vehicle)

  • 임언택;도명식
    • 대한토목학회논문집
    • /
    • 제41권3호
    • /
    • pp.317-325
    • /
    • 2021
  • 1988년 부산에서 처음 발병된 소나무재선충병(Pine Wilt Disease, PWD)은 우리나라 소나무에 막대한 피해를 주고 있는 심각한 질병이다. 정부에서는 2005년 소나무재선충병 방제특별법을 제정하고 피해지역의 소나무 이동 금지와 방제를 시행하고 있다. 하지만, 기존의 예찰 및 방제방법은 산악지형에서 동시다발적이고 급진적으로 발생하는 소나무재선충병을 줄이기에는 물리적, 경제적 어려움이 있다. 따라서 본 연구에서는 소나무재선충병 감염의심목을 효율적으로 탐지하기 위해 무인항공기를 이용한 영상자료를 바탕으로 딥러닝 객체인식 예찰 방법의 활용가능성을 제시하고자 한다. 소나무재선충병 피해목을 관측하기 위해서 항공촬영을 통해 영상 데이터를 획득하고 정사영상을 제작하였다. 그 결과 198개의 피해목이 확인되었으며, 이를 검증하기 위해서 접근이 불가한 급경사지나 절벽과 같은 곳을 제외하고 현장 조사를 진행하여 84개의 피해목을 확인할 수 있었다. 검증된 데이터를 가지고 분할방법인 SegNet과 검출방법인 YOLOv2를 이용하여 분석한 결과 성능은 각각 0.57, 0.77로 나타났다.

YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템 (Expiration Date Notification System Based on YOLO and OCR algorithms for Visually Impaired Person)

  • 김민수;문미경;한창희
    • 한국전자통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1329-1338
    • /
    • 2021
  • 점자를 제외한 시각 장애우들이 유통기한을 확인할 수 있는 효과적인 방법이 거의 개발되어 있지 않으며, 이로 인하여 시각 장애우들의 식품 안전성이 위협받고 있다. 본 연구에서는 시각 장애우의 식품 안전성 확보를 위해 실시간 객체 인식 알고리즘(you only look once, YOLO) 및 광학 문자 인식 (optical character recognition, OCR)에 기반한 유통기한 알림 시스템을 개발했다. 제안하는 시스템은 총 4가지 단계로 시각 장애우에게 유통기한 정보를 전달한다: (1) 표적 제품의 바코드 스캔을 통한 제품 확인 (2) 실시간으로 입력되는 제품 영상에서 YOLO 알고리즘을 활용하여 유통기한이 표기된 이미지 영역 검출; (3) 검출된 이미지 영역에서 OCR 알고리즘을 활용하여 유통기한 문자 인식; (4) Text to Speech (TTS) 기술을 활용하여 유통기한 정보를 사용자에게 전달. 성능 평가를 위한 온라인 실험 결과, 앞이 보이지 않는 피험자가 개발한 시스템을 사용해서 제품의 유통기한을 평균 86%의 높은 정확도로 확인할 수 있음이 검증되었다. 이러한 결과는 제안하는 시스템이 저시력자를 포함한 시각 장애우들의 식품 안전성 확보에 이바지할 수 있음을 보여준다.

차량검출 GMM 2.0을 적용한 도로 위의 차량 검출 시스템 구축 (On-Road Car Detection System Using VD-GMM 2.0)

  • 이옥민;원인수;이상민;권장우
    • 한국통신학회논문지
    • /
    • 제40권11호
    • /
    • pp.2291-2297
    • /
    • 2015
  • 본 연구에서는 레이더 검지 시스템과 통합하여 적용하기 위해 도로 위를 이동하는 자동차의 영상을 입력 받아 자동차를 검출하는 방법을 제안한다. 입력 영상의 제약조건이 있다. 도로 위에서 아래 방향을 비스듬히 내려 보는 고정된 시야를 가져야한다는 점이다. 주어진 영상 중 도로 영역만을 이용하기 위해 도로 영역을 관심영역으로 검출해 적용한다. 서론에서는 도로 영역 내에서 차량 검출을 위해 사용한 모션 히스토리 이미지 추출 방법, SIFT(Scale-Invariant Feature Transform) 알고리즘, 히스토그램 분석 등을 적용한 실험결과와 이에 대한 한계점을 제시했다. 이를 해결하기 위해서 가우시안 혼합 모델(GMM, Gaussian Mixture Model)의 응용을 제안한다. 가우시안 혼합 모델 알고리즘을 응용한 차량 검출 GMM(VDGMM, Vehicle Detection GMM)과 이를 차량 검출에 더 최적화한 차량 검출 GMM 2.0을 설명하고, 차량 검출 GMM 2.0을 적용한 실험결과 및 결론을 제시한다. 도로 영역 검출 없이 GMM을 적용한 결과는 정확율, 재현율, F1이 각각 9%, 53%, 15%이었고, 도로 영역 검출 후 차량 검출 GMM 2.0을 적용한 결과는 각각 85%, 77%, 80%로 많은 차이를 보였다.

HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식 (Real-time Hand Pose Recognition Using HLF)

  • 김장운;김송국;홍석주;장한별;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

Face Detection Using Shapes and Colors in Various Backgrounds

  • Lee, Chang-Hyun;Lee, Hyun-Ji;Lee, Seung-Hyun;Oh, Joon-Taek;Park, Seung-Bo
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.19-27
    • /
    • 2021
  • 본 논문에서는 영상 속 인물을 탐지하고 얼굴 영역을 검출하는 방법을 제안하며, 이 방법은 2가지 작업으로 구성한다. 첫째, 서로 다른 두 명의 인물을 구분하여 프레임 내 인물의 얼굴 위치를 탐지한다. 빠른 탐지를 위해 영상 내 물체를 실시간으로 검출하는 YOLO(You Only Look Once)를 이용하여 얼굴의 위치를 탐지하고 객체탐지상자로 나타낸다. 둘째, 객체탐지상자를 바탕으로 정확한 얼굴 면적을 검출하기 위해 3가지 영상처리 방법을 제시한다. 각 방법은 검출 도형으로 추정한 영역에서 추출한 HSV 값을 이용하여 인물의 얼굴 영역을 검출하였으며 검출 도형의 크기와 모양을 바꾸어 각 방법의 정확도를 비교하였다. 각 얼굴 검출 방법은 신뢰성 검증을 위해 비교 데이터와 영상처리 데이터로 비교 및 분석하였다. 그 결과 원형, 직사각형, 분할 직사각형 방법 중 분할된 직사각형 방법을 사용했을 때 87%로 가장 높은 정확도를 달성하였다.

영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발 (Development of Deep Learning Structure for Defective Pixel Detection of Next-Generation Smart LED Display Board using Imaging Device)

  • 이선구;이태윤;이승호
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.345-349
    • /
    • 2023
  • 본 논문은 영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발에 관한 연구를 제안한다. 이 연구에서는 영상장치를 활용하여 딥러닝을 통해 실외 LED 전광판의 결함을 자동으로 검출하는 기법을 제안한다. 이를 통해 LED 전광판의 효율적인 관리와 발생할 수 있는 다양한 오류와 문제를 해결하고자 한다. 연구 과정은 3단계를 거쳐 이루어진다. 첫 번째로, 평면화된 전광판 이미지 데이터를 calibration을 통해 배경을 완전히 제거하고 필요한 전처리 과정을 거쳐 학습 데이터셋을 생성한다. 두 번째로, 생성된 데이터셋은 객체 인식 네트워크를 학습을 시키는 데 활용된다. 네트워크는 Backbone과 Head로 구성된다. Backbone에서는 CSP-Darknet을 활용하여 특징 맵을 추출하고, Head에서는 추출된 Feature Map을 기반으로 물체를 검출한다. 이 과정에서 네트워크는 Confidence score와 IoU가 일치하도록 오차를 수정하며 지속적으로 학습된다. 세 번째에서는 생성된 모델을 활용하여 실제 실외 LED 전광판에서 불량픽셀을 자동으로 검출한다. 본 논문에서 제안하는 방법을 적용하여 LED 전광판의 불량픽셀 검출에 대한 공인 측정 실험 결과로는 실제 LED 전광판에서 불량픽셀을 100% 검출한 결과를 얻을 수 있었다. 이를 통해 LED 전광판의 불량 관리와 유지보수의 효율성이 향상되었음을 확인할 수 있다. 이러한 연구 결과는 LED 전광판 관리의 획기적인 개선을 이룰 것으로 기대된다.

YOLOv4 기반의 소형 물체탐지기법을 이용한 건설도면 내 철강 자재 문자 검출 및 인식기법 (Character Detection and Recognition of Steel Materials in Construction Drawings using YOLOv4-based Small Object Detection Techniques)

  • 심지우;우희조;김윤환;김응태
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.391-401
    • /
    • 2022
  • 최근 딥러닝 기반의 객체 검출 및 인식 연구가 발전해가면서 산업 및 실생활에 적용되는 범위가 넓어지고 있다. 건설 분야에도 딥러닝 기반의 시스템이 도입되고 있지만 아직은 미온적이다. 건설 도면에서 자재 산출이 수작업으로 이뤄지고 있어 많은 소요시간과 부정확한 적산 결과로 잘못된 물량산출의 거래가 생길 수 있다. 이를 해결하기 위해서 빠르고 정확한 자동 도면 인식시스템이 필요하다. 따라서 본 논문은 건설도면 내 철강 자재를 검출하고 인식하는 인공지능기반 자동 도면 인식 적산 시스템을 제안한다. 빠른 속도의 YOLOv4 기반에 소형 객체 검출성능을 향상하기 위한 복제 방식의 데이터 증강기법과 공간집중 모듈을 적용하였다. 검출한 철강 자재 영역을 문자 인식한 결과를 토대로 철강 자재를 적산한다. 실험 결과 제안한 방식은 기존 YOLOv4 대비 정확도와 정밀도를 각각 1.8%, 16% 증가시켰다. 제안된 방식의 Precision은 0.938, Recall은 1, AP0.5는 99.4%, AP0.5:0.95 68.8%의 향상된 결과를 얻었다. 문자 인식은 기존 데이터를 사용한 인식률 75.6%에 비해 건설도면에 사용되는 폰트에 맞는 데이터 세트를 구성하여 학습한 결과 99.9%의 인식률을 얻었다. 한 이미지 당 평균 소요시간은 검출 단계는 0.013초, 문자 인식은 0.65초, 적산 단계는 0.16초로 총 0.84초의 결과를 얻었다.

정면 투영 환경에서의 자동 칼라 보정에 의한 손 영역 추적 알고리즘 (Bare-Hand Tracking Based on Automatic Color Calibration in Front Projection Environment)

  • 고은영;남양희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.766-768
    • /
    • 2005
  • 최근 대형 디스플레이 및 웨어러블 컴퓨터의 등장과 함께 키보드와 마우스를 사용하는 일반 데스크탑 환경에서 벗어난 컴퓨터와의 자연스러운 상호 작용 연구가 활발히 진행되고 있다. 본 논문에서는 스크린 정면에 놓인 프로젝터가 스크린과 그 위에 놓인 사용자의 손 위에 화면을 투영할 때 PC 카메라로 입력된 프레임 속에서 손의 영역을 인식하여 컴퓨터와 상호작용하게 하고자 한다. 이 경우에 투영된 빛이 사용자의 손 위에도 합쳐짐으로 인하여 피부의 고유색이 사라진다. 또한, 투영되는 화면이 사용자와 컴퓨터의 상호 작용에 따라 추정할 수 없이 변함에 따른 적응적 인식 방법이 필요하다. 따라서, 본 논문에서는 손을 인식하기에 앞서 스크린에 투영될 원본 이미지에 대해 칼라 보정을 수행하여 추정되는 카메라 입력 프레임을 생성한다. 이를 위해 우선 백색 영상을 투영하여 프레임 내의 자기 오차 맵을 생성한 후 R,G,B 채널 별로 원본 값에 대한 카메라 반응 값들을 룩업 테이블에 저장한다. 이를 통해 원본 이미지에 대해 칼라보정을 수행하고, 생성된 카메라 추정 프레임과 실제 카메라로 입력된 프레임 간 자기 성분을 비교하여 손 영역을 검출한다. 실험 결과, 주변의 조명 상태나 프로젝터 및 카메라의 위치에 관계없이 안정적인 인식 결과를 보였다.

  • PDF