• 제목/요약/키워드: 이미지 검출방법

검색결과 534건 처리시간 0.028초

회화문화재 객체검출을 위한 학습용 이미지 데이터셋 구축 방안 연구 (A Study on the Construction of Image Datasets for Object Detection of Painting Cultural Heritage)

  • 권도형;유정민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.853-855
    • /
    • 2021
  • 본 연구는 회화문화재 속에 표현된 다양한 종류의 객체를 검출할 수 있는 딥러닝 모델생성을 위해 필요한 학습용 이미지 데이터셋 구축방안을 제안한다. 먼저 기존 동양화 기반의 회화문화재 이미지 데이터 및 객체 특징 분석을 진행하였고, 이를 바탕으로 Natural image에 Pose transfer 및 Style transfer를 적용한 새로운 방식의 회화문화재 이미지 데이터 생성 방법을 제안한다. 제안한 프레임워크를 통해 기존 문화재 분야에서 가지고 있던 제한된 데이터 구축문제를 극복하고, 검출모델 생성을 위한 대용량의 학습데이터 구축 가능성을 제시하였다.

지역적 연결요소 및 에지 구조 성분 특징을 이용한 자연이미지로부터 문자영역 검출 (Text Region Detection Using Regional Connected Component and Edge Structure Component Feature From Natural Scene Images)

  • 박종천;황동국;권교현;전병민
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 춘계학술발표논문집
    • /
    • pp.40-43
    • /
    • 2009
  • 최근 모바일 영상기반 응용 분야에 관한 연구가 활발히 진행되고 있으며 모바일기기로 촬영된 영상에서 문자정보를 추출하고자 하는 많은 연구도 진행되고 있다. 자연이미지로부터 문자정보를 추출을 위한 전단계로 문자영역 검출이 필수적이다. 본 연구는 문자영역의 지역적 에지 및 연결요소 특징을 고려하여 조명 및 복잡한 배경에서도 문자영역을 검출하는 방법을 제안한다. 에지 검출은 캐니-에지 검출기로 추출하고, RGB 컬러분포 패턴을 분석하여 컬러 양자화를 함으로서 연결성분을 추출한다. 각각 추출된 에지 및 연결성분으로부터 문자후보 영역을 검출하고, 각각의 결과를 결합하여 최종적인 문자 후보 영역을 검출하고, 문자 후보 영역에 대한 검증을 수행함으로서 최종적인 문자영역을 검출한다. 제안한 방법은 다양한 환경에서 얻어진 자연이미지를 대상으로 실험한 결과, 에지 및 연결성분의 두 가지 특징을 결합함으로서 자연이미지에 존재하는 다양한 형태의 문자영역을 효과적으로 검출하였다.

  • PDF

이미지 데이터베이스에서 매개변수를 필요로 하지 않는 클러스터링 및 아웃라이어 검출 방법 (A Parameter-Free Approach for Clustering and Outlier Detection in Image Databases)

  • 오현교;윤석호;김상욱
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.80-91
    • /
    • 2010
  • 이미지 데이터가 증가함에 따라 효율적인 검색을 위해서 이미지 데이터를 구조화해야 할 필요성이 증가하고 있다. 이미지 데이터를 구조화하기 위한 대표적인 방법으로는 클러스터링이 있다. 그러나 기존 클러스터링 방법들은 클러스터링을 수행하기 전에 매개변수로서 클러스터의 개수를 사용자로부터 제공 받아야 되는 어려움이 있다. 본 논문에서는 클러스터의 개수를 사용자에게 제공 받지 않고 이미지 데이터를 클러스터링 하는 방안에 대해서 논의 한다. 제안하는 방안은 객체들 간의 상호 연관관계를 이용하여 매개변수 없이 데이터의 감추어진 구조나 패턴을 찾아내는 방법인 Cross-Association을 기반으로 한다. 이미지 데이터 클러스터링에 Cross-Association을 적용하기 위해서는 먼저 이미지 데이터를 그래프로 변환해야 한다. 그런 후에 생성된 그래프를 Cross-Association에 적용시키고 그 결과를 클러스터링 관점에서 해석한다. 본 논문에서는 또한 Cross-Association을 기반으로 계층적 클러스터링 하는 방법과 아웃라이어 검출 방법을 제안한다. 실험을 통해서 제안하는 방법의 우수성을 규명하고 이미지 데이터를 클러스터링 하는데 적절한 k-최근접 이웃검색에서의 k값과 더 나은 그래프 생성 방법이 무엇인지를 제시한다.

고정패턴잡음 제거를 위한 적외선 이미지 센서용 CMOS 검출회로 설계에 관한 연구 (A Design of CMOS ROIC with Reduced Fixed Pattern Noise for Infrared Image Sensor Applications)

  • 신호현;황상준;유승우;성만영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.16-17
    • /
    • 2006
  • 적외선 이미지 센서용으로 사용되는 마이크로 볼로미터 센서는 process variation으의 인하여 모든 볼로미터 센서의 셀이 정확한 저항값을 갖지 못하여 입력신호에 왜곡을 가져 온다. 본 논문에서는 적외선 이미지 센서용 CMOS 검출회로를 설계하는 데 있어, 이러한 볼로미터 셀 어레이의 고정패턴잡음(Fixed Pattern hoise)을 최소화하는 방법에 대해 연구하였다. 기존의 단일 입력 방식 검출회로는 볼로미터 셀어레이의 고정패턴잡음을 보정하기 위하여 추가적인 보정 회로를 필요로 하였다. 이러한 문제점을 해결하기 위해서 본 논문에서는 차동 입력 방식 검출회로를 제안하였으며, 이를 적용하여 출력을 살펴본 결과 추가적인 보정회로 없이 20%의 노이즈 감쇠효과를 얻을 수 있다. 연구 결과를 바탕으로 32${\times}$32 크기를 갖는 셀어레이의 볼로미터를 구성하여 전체 칩을 설계하였으며 컴퓨터 시물레이션을 통해 결과를 분석하였다.

  • PDF

이미지 분석 방식을 적용한 인지 재활 시스템 (Rehabilitation System through Image Analysis Method)

  • 임명재;정희웅;권영만
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.209-214
    • /
    • 2010
  • 본 논문은 이미지 분석 플랫폼(Open Eye)을 통하여서 치매노인 예방 또는 뇌졸중 환자 등을 위한 인지재활 시스템을 제안하고 한다. 본 방법은 카메라를 통하여서 사용자의 움직임에 따른 영상을 얻고 이를 OpenCV 영상처리 라이브러리를 기반으로 모션을 분석하여 이를 인지재활 시스템에 적용하였다. 제안하는 이미지 분석 시스템에서는 모션인지를 위해서 CAMshift 알고리즘을 적용하여 이미지 영역과 동작을 검출한다. 이를 통해 치매에 노출된 노인 또는 뇌졸중 환자들의 손동작 이미지를 검출하고, 검출된 이미지의 특징점을 추출한다. 추출된 결과 이미지를 다양하게 형상화하였으며, 지속적인 동작을 유도하여 운동성과 인지능력을 부여할 수 있는 게임형 인지 재활 시스템을 구현하였다.

JPEG 압축 도메인에서 인증용 워터마킹에 관한 연구 (A Study on Authentication Watermarking in the JPEG Compression Domain)

  • 김영남;김종원;최기철;최종욱
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.412-414
    • /
    • 2004
  • 본 논문은 이미지 위/변조 검출 린 인증을 위한 고속의 Semi-Fragile 워터마킹 방법을 제안한다. 제안방법은 JPEG 이미지를 허프만 복호화 후에, 양자화 테이블 값에 의한 변화율이 같은 특정 양자화 계수를 비교함으로써 조건을 만족하는 8$\times$8 블록 당 1비트 워터마크 정보를 삽입한다. 이때의 조건은 이미지의 열화를 초래하지 않을 정도의 작은 boundary 값을 기준으로 한다. 제안한 방법이 압축에 강인함을 실험을 통하여 증명하였다.

  • PDF

컬러 이미지에서의 후보 관심 영역 검출 방법 (A Method of Extracting Candidate Regions of Interest in Color Image)

  • 박형근;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.462-464
    • /
    • 2012
  • 이미지를 입력으로 사용하는 다양한 응용 분야에서, 이미지에 포함되어 있는 객체의 의미를 이해하는것은 매우 중요하다. 이미지에 포함된 객체의 인식을 위해 우선적으로 관심 영역을 추출하는 경우, 인식하고자 하는 대상의 특징에 대한 사전 지식이나 입력된 이미지에서의 위치, 색, 그리고 크기 정보를 이용하는 것이 일반적이다. 그러나 이미지로부터 사전 지식이 전무한 불특정 다수의 객체에 대한 의미를 추론해야 하거나 그로부터 정보를 수집해야 하는 경우, 이러한 관심 영역 추출 방법은 효과적이지 않다. 본 논문에서는 이를 위해 컬러 이미지를 입력으로 사용하는 응용에서 이미지의 양자화 된 색 정보와 다중 저해상도 정보만을 이용하여 관심 객체가 될 가능성이 있는 후보 관심 영역들을 포함하는 최소 장방형 영역들을 구조적 정보와 함께 추출할 수 있는 방법을 제안한다.

영상신호와 신경회로망을 이용한 보일러 화염 검출 (Flame Detection of Steam Boilers using Neural Networks and Image Information)

  • 배현;박동재;안항배;김성신
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.163-168
    • /
    • 2003
  • 현재 사용중인 화염 검출기들은 화염 검출에 있어서의 특정 문제점들을 종종 나타내고 있다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 캠코더로 획득한 이미지를 적절하게 전치리한 후 신경망의 입력으로 사용하여 화염을 검출하였다. 이미지를 이용한 화염검출의 경우 보일러 외부에서 데이터를 획득하기 때문에 내부열에 대한 영향들을 줄일 수 있는 방법으로 현재 적용 중인 센서에 기반한 화염검출 방법과는 구별된다. 그리고 패턴 분류를 위하여 사용한 신경망 모델은 다른 버너의 화염에 의한 유사정보틀을 잘 분류하기 때문에 화염검출기의 부정확한 동작을 줄일 수 있다. 신경망은 각 조건에 대한 특징을 학습하고 학습된 정보를 바탕으로 효율적인 화염검출을 수행한다.

문자인식의 전처리단계에서 영상처리과정의 개선 (Improving the processing of image in the Pre-processing of a Character Recognition)

  • 신충호;김재석;오무송
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.460-462
    • /
    • 2001
  • 컴퓨터 이미지처리는 여러 분야에서 응용되고 있는데 어떤 특성을 만족하는 객체들의 계수를 자동으로 분류시키는 생물학분야, 편지봉투나 일반양식에 인쇄되어 있는 글자를 자동으로 검출하고 인식하며 초음파검사 혹은 X-Ray 촬영에서 이미지를 획득하여 향상시키는 의료분야, 지문 및 얼굴인식 등에 이용되고 있다. 최근 몇 년 동안 이미지인식, 형태론, 이미지데이터 압축에 관한 연구가 진전되면서 본 연구에서 형태론적인 기법을 사용하여 문자인식을 위한 전처리 혹은 후처리 단계에서 사용되는 이미지향상을 위해서 팽창, 침식, 골격화의 3단계를 적용하고 기존의 연구 방법과 비교하여 이미지획득 시간을 줄이고 이미지를 향상시켰다.

  • PDF

Harris corner 검출법과 median filtering을 이용한 렌더링 이미지 노이즈 제거에 관한 연구 (A Study on rendering image denoising using Harris corner detection and median filtering)

  • 유호준;오재무;황현상;이의철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.960-962
    • /
    • 2021
  • Monte Carlo 렌더링은 모든 빛을 광원에서부터 추적하는 것 대신, 몇 개의 빛의 경로만을 추적해서 이들의 평균으로 화소값을 정해 이미지를 만드는 방법이다. 여기서 추적하는 빛이 많다면 이미지가 사실적으로 만들어질 수 있지만 연산량이 증가한다. 따라서 적은 빛의 경로를 추적하여 렌더링을 수행하여 이미지를 만들고, 노이즈를 제거해서 많은 양의 빛을 추적하여 렌더링을 한 이미지와 유사하게 만들려는 연구가 많이 진행되고 있다. 그러나 이러한 연구들은 많은 연산량을 요구하기 때문에 고성능의 기기 사양을 요구한다. 따라서 본 연구에서는 저사양의 기기에서 활용할 수 있도록 Harris corner 검출법과 median filtering을 활용한 렌더링 이미지 노이즈 제거 연구를 수행했다.