Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.8
/
pp.1941-1947
/
2014
Document image binarization is largely used as previous stage of document recognition. And the result of document recognition is much affected from the result of document image binarization. There were many studies to binarize document images. The results of previous studies for document image binarization is varied according to the state of document images. In this paper, we propose a technique for document image binarization using MSER that is applied to extract objects from an image. At first, raw MSER objects are extracted from a document image. Because the raw MSER objects cannot be used for document image binarization, the extracted raw MSER objects are modified. Then the final MSER objects are used for document image binarization with the contrast image that is extracted from the document image. Experimental results show that the proposed technique is useful for document image binarization.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.25-27
/
2011
본 논문에서는 이미지 블록의 평균 픽셀 값 특성을 양자화 인덱스 변조 기법에 적용하여 이미지 포맷변환에 강인한 정보은닉 기법을 제안한다. 포맷변환에 강인한 이미지 속성은 정규화된 픽셀 히스토그램에 기반하여 분석되며, 그 중 평균 픽셀 값을 통해 정보은닉 알고리즘이 구성된다. 평균 픽셀 값을 양자화 인덱스 변조기법에 적용하기 위한 방안으로 DCT 계수를 정규화 하는 방법이 선택되며, 추출 성공률을 높이기 위해 오류정정부호가 사용된다. 따라서 본 논문의 알고리즘을 통해 결합 이미지가 압축, 사이즈 변화 등의 과정을 거치게 될 경우 발생하는 문제점을 극복할 수 있다.
A new compressed image format is proposed to use a large size of image in mobile games without the constraints of hardware specifications such as memory amount, processing power, which encodes each block of a large size image in scan line order. Using the experiments, we show the effectiveness of proposed method compared with a general PNG in terms of compression ratios and required memory in decoding processes. Also, the loading delay can be reduced by decoding only the displaying area of a large image in run-time.
Due to NxN block coding blocking artifacts are exhibited by block-based DCT coding images, primarily at low bit rates. In this letter, we propose the new technique that reduce the blocking artifacts pixels in such images. In the case of combining with list block reconstruction techniques, our algorithm can be also used to improve image qiality. And, the performance of the proposed algorithm is demonstrated experimentally.
How to efficiently and accurately detect the damages generated in a structure has become an important issue for structural health monitoring (SHM). Most existing SHM techniques require the baseline data which should be measured before a structure get damaged. Thus, this paper presents a new pitch-catch method-based SHM technique which will not require the baseline data any more. In the proposed SHM technique, the imaging method is also utilized to visualize damage locations. The proposed SHM technique is then validated through the damage detection texts for damaged aluminum plates.
Deep learning can solve various computer vision problems, but it requires a large dataset. Data augmentation technique based on image binarization for constructing large-scale datasets is proposed in this paper. By extracting features using image binarization and randomly placing the remaining pixels, new images are generated. The generated images showed similar quality to the original images and demonstrated excellent performance in deep learning models.
Recently, folksonomy-based image-sharing sites where users cooperatively make and utilize tags of image annotation have been gaining popularity. Typically, these sites retrieve images for a user request using simple text-based matching and display retrieved images in the form of photo stream. However, these tags are personal and subjective and images are not categorized, which results in poor retrieval accuracy and low user satisfaction. In this paper, we propose a categorization scheme for folksonomy images which can improve the retrieval accuracy in the tag-based image retrieval systems. Consequently, images are classified by the semantic similarity using text-information and image-information generated on the folksonomy. To evaluate the performance of our proposed scheme, we collect folksonomy images and categorize them using text features and image features. And then, we compare its retrieval accuracy with that of existing systems.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.555-556
/
2021
In this paper, we propose a malware family classification scheme using malware visualization and transfer learning. The malware can be easily reused or modified. However, traditional malware detection techniques are vulnerable to detecting variants of malware. Malware belonging to the same class are converted into images that are similar to each other. Therefore, the proposed method can classify malware with a deep learning model that has been verified in the field of image classification. As a result of an experiment using the VGG-16 model on the Malimg dataset, the classification accuracy was over 98%.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.35-36
/
2016
본 논문에서는 기존 Bag-of-Visual words (BoW) 접근법에서 반영하지 못한 이미지의 공간 정보를 활용하기 위해서 Spatial Pyramid Matching (SPM) 기법을 Latent Dirichlet Allocation (LDA) 모델에 결합하여 이미지를 분류하는 모델을 제안한다. BoW 접근법은 이미지 패치를 시각적 단어로 변환하여 시각적 단어의 분포로 이미지를 표현하는 기법이며, 기존의 방식이 이미지 패치의 위치정보를 활용하지 못하는 점을 극복하기 위하여 SPM 기법을 도입하는 연구가 진행되어 왔다. 또한 이미지 패치를 정확하게 표현하기 위해서 벡터 양자화 대신 희소 부호화 기법을 이용하여 이미지 패치를 시각적 단어로 변환하였다. 제안하는 모델은 BoW 접근법을 기반으로 위치정보를 활용하는 SPM 을 LDA 모델에 적용하여 시각적 단어의 토픽을 추론함과 동시에 multi-class SVM 분류기를 이용하여 이미지를 분류한다. UIUC 스포츠 데이터를 이용하여 제안하는 모델의 분류 성능을 검증하였다.
Proceedings of the Korea Multimedia Society Conference
/
2000.04a
/
pp.357-360
/
2000
최근에는 텍스트기반 검색 기법의 단점들을 극복하기 위하여 멀티미디어 데이터에서 내용으로 표현되는 특징데이터(Feature data)를 자동으로 추출하여 이를 기반으로 검색을 하는 내용기반 검색기법(Content- Based Retrieval Technique)에 대한 연구가 활발하다. 그러나 내용기반 검색 시스템에서 데이터 수가 무한히 많아질 경우, 찾고자 하는 이미지를 검색하는데 정확성과 시간면에서 효율성이 떨어진다. 따라서 방대한 이미지 데이터를 보다효과적으로 검색하고 저장하기 위해서는 유사성이 높은 이미지들을 서로 묶어 그룹화하고 그룹별 특징을 분석하여 인덱스화 함이 필요하다. 이에 본 논문에서는 그룹화를 위해 각각의 이미지 객체에 대하여 웨이브릿변환 (Wavelet Transform) 기법과 질감 특징( Texture Feature) 값 추출을 통해 그룹간에 가지는 특징값을 분석 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.