• Title/Summary/Keyword: 이미지정보

Search Result 5,869, Processing Time 0.029 seconds

Automatic Tagging for Social Images using Convolution Neural Networks (CNN을 이용한 소셜 이미지 자동 태깅)

  • Jang, Hyunwoong;Cho, Soosun
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • While the Internet develops rapidly, a huge amount of image data collected from smart phones, digital cameras and black boxes are being shared through social media sites. Generally, social images are handled by tagging them with information. Due to the ease of sharing multimedia and the explosive increase in the amount of tag information, it may be considered too much hassle by some users to put the tags on images. Image retrieval is likely to be less accurate when tags are absent or mislabeled. In this paper, we suggest a method of extracting tags from social images by using image content. In this method, CNN(Convolutional Neural Network) is trained using ImageNet images with labels in the training set, and it extracts labels from instagram images. We use the extracted labels for automatic image tagging. The experimental results show that the accuracy is higher than that of instagram retrievals.

A STUDY ON VISUAL IMAGE DIVERSITY OF HANGUL (한글의 시각적 이미지 다양화에 관한 연구.)

  • Lee, Hyoun-Joo;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.591-599
    • /
    • 1992
  • 한글의 신속하고 정확한 정보전달 기능을 유지 발전시킴과 동시에, 정보 전달의 목적 및 효율성을 높이기 위하여, 인간심리에 직접 영향 미치는 시각적 이미지를 지니는 조형적 문자의 서체 및 기능 개발에 필요한 현행 한글서체들의 시각적 이미지에 대한 분석적 연구를 시도하였다. 대표적인 24개의 현행 한글서체에 대한 이미지를 표본조사 및 수치분류적 기법에 의한 이미지 특성을 분석하였다. 연구결과, 현행 한글서체는 크게 5개의 그룹으로 구분되며, 예서체는 현행 한글서체 중에서 가장 독특하고 집중된 이미지를 지닌 서체로 나타났다. 한글서체 개발은 수치적 분석에 의하여 방향정립 및 높은 예측성을 지닐 수 있으며. 목적지향적인 폰트개발 및 균형있는 서체운용 체계의 운용에 의하여 극대화될 수 있다.

  • PDF

Colorization of gray image Using DCGAN (DCGAN기반의 흑백 이미지의 색상화)

  • Kim, Do-Hyoung;Song, Kwan-Dong;Wi, Seung-Ok;Kim, Ji-Hee;Jeon, Gwang-Gil
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1016-1018
    • /
    • 2019
  • 흑백 1채널 이미지를 3 채널 이미지로 색상화하고 Super-Resolution하여 의미 있는 정보 얻도록 한다. CCTV, 군사용 카메라, 차량용 블랙박스 등 많은 분야에서 주간에 촬영된 영상은 컬러 이미지로 많은 정보를 얻을 수 있다. 하지만 야간에 촬영된 영상은 빛이 없어서 영상에서 정보를 얻기가 원활하지 않다. 따라서 DCGAN을 통해 단일 채널의 흑백 이미지를 3채널의 색상화 이미지로 만들고, Super-Resolution 기술을 적용해서 해상도를 높여 가시광선이 없는 야간이나 어두운 공간에서도 의미있는 영상을 얻을 수 있도록 한다.

Image Segmentation Using Color Morphological Pyramids (Color Morphological Pyramids를 이용한 이미지 분할)

  • 이석기;최은희;김석태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.789-795
    • /
    • 2002
  • Color image is formed of combination of three color channels. Therefore its architecture is very complicated and it requires complicated image Processing for effective image segmentation. In this paper. we propose architecture of universalized Color Morphological Pyramids(CMP) which is able to give effective image segmentation. Image Pyramid architecture is a successive Image sequence whose area ratio $2^{\int}({\int}=1,2,....,N)$ after filtering and subsampling of input image. In this technique, noise removed by sequential filtering and resolution is degraded by downsampling using CMP in various color spaces. After that, new level images are constructed that apply formula using distance of neighbor vectors in close level images and segments its image. The feasibility of proposed method is examined by comparing with the results obtained from the existing method.

A Study on Improvement of Image Classification Accuracy Using Image-Text Pairs (이미지-텍스트 쌍을 활용한 이미지 분류 정확도 향상에 관한 연구)

  • Mi-Hui Kim;Ju-Hyeok Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.561-566
    • /
    • 2023
  • With the development of deep learning, it is possible to solve various computer non-specialized problems such as image processing. However, most image processing methods use only the visual information of the image to process the image. Text data such as descriptions and annotations related to images may provide additional tactile and visual information that is difficult to obtain from the image itself. In this paper, we intend to improve image classification accuracy through a deep learning model that analyzes images and texts using image-text pairs. The proposed model showed an approximately 11% classification accuracy improvement over the deep learning model using only image information.

A Robust Real-time Object Detection Method using Dominant Colors in Images (이미지의 주요 색상 정보들을 이용한 실시간 객체 검출 방법)

  • Park, Kyung-Wook;Koh, Jae-Han;Park, Jae-Han;Baeg, Seung-Ho;Baeg, Moon-Hong
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.301-304
    • /
    • 2007
  • 자동으로 이미지 안에 존재하는 객체들을 인식하는 문제는 내용 기반 이미지 검색이나 로봇 비전과 같은 다양한 분야들에서 매우 중요한 문제이다. 이 문제를 해결하기 위하여 본 논문에서는 객체의 주요 색상 정보들을 이용하여 실시간으로 이미지 안의 객체들을 인식하는 알고리즘을 제안한다. 본 논문에서 제안하는 방법의 전체적인 구조는 다음과 같다. 처음에 MPEG-7 색상 정보 기술자들 중 하나인 주요 색상 정보 기술자를 이용하여 객체의 주요 색상 정보들을 추출한다. 이 때 이 정보는 가우시안 색상 모델링을 통하여 빛이나 그림자와 같은 외부 환경 조건에 좀 더 강인한 색상 정보로 변환된다. 다음으로 변환된 색상 정보들을 기반으로 주요 객체와 입력 이미지와의 픽셀 값차이를 계산하고, 임계값 이상의 값을 가지는 픽셀들을 제거한다. 마지막으로 입력 이미지에서 제거되지 않은 픽셀들을 기반으로 하나의 영역을 생성한다. 결론으로서, 본 논문에서는 제안된 방법에 대한 실험 평가들을 수행 및 분석하고 몇몇 한계점들에 대해서 알아본다. 또한 이 문제들을 해결하기 위한 앞으로의 연구 계획에 대해서 기술한다.

A Study of Image Attributes for Image Database (이미지 데이터베이스 구축을 위한 데이터항목 속성 연구)

  • Kwak Chul-Wan;Lee Eun-Chul
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.2
    • /
    • pp.169-187
    • /
    • 1998
  • The purpose of the study is to identify what terms are used, how they are categorized, and what they are related each others to search image files. Data collection was conducted through 5 photographies using 22 participants. The study shows that used terms were affected by image contents and size, and pre-iconography, iconology, time, geographical location, and relationship were important for image attributes.

  • PDF

Character image database retrieval using MPEG-7 Color Descriptors (MPEG-7 컬러 기술자를 활용한 캐릭터 이미지 데이터베이스 검색)

  • 유광석;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.641-644
    • /
    • 2001
  • 멀티미디어 검색을 위한 MPEG-7 표준화 작업이 완료되어감에 따라, 멀티미디어 특징 기술자를 활용한 다양한 응용들이 나타나고 있다. 본 논문에서는 미키 마우스, 포켓 몬스터 또는 호돌이와 같은 지적 재산 정보인 동시에 고부가가치 대상인 캐릭터 이미지를 대상으로 하여, 캐릭터 이미지 특징을 분석하고, MPEG-7 에서 정의된 컬러 기술들간의 검색 효율을 비교하여, 캐릭터 이미지에 가장 적합한 기술자를 제안한다. 캐릭터 이미지는 자연 이미지와는 달리, 질감(Texture)이나 모양 (Shape)정보에 비해, 주로 컬러 정보에 의존하며,존재하는 컬러의 수가 3-6 개 범위 내에 주로 존재하고, 컬러의 분포가 고르며, 질감 성분이 많지 않은 특징을 갖고 있다. MPEG-7 에 정의된 Dominant Color, Scalable Color, Color Layout 및 Color Structure 4 종류의 기술자를 캐릭터 이미지 특징에 맞는 기술자를 유형별로 분류된 3,834개의 이미지 셋에 적용하여, 검색 성능 평가 지수인 ANMRR(Average Normalized Modified Retrieval Rank) 를 측정하여 가장 효율적인 기술자를 정의한다.

  • PDF

Image Generation based on Text and Sketch with Generative Adversarial Networks (생성적 적대 네트워크를 활용한 텍스트와 스케치 기반 이미지 생성 기법)

  • Lee, Je-Hoon;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.293-296
    • /
    • 2018
  • 생성적 적대 네트워크를 활용하여 텍스트, 스케치 등 다양한 자원으로부터 이미지를 생성하기 위한 연구는 활발하게 진행되고 있으며 많은 실용적인 연구가 존재한다. 하지만 기존 연구들은 텍스트나 스케치 등 각 하나의 자원을 통해 이미지를 생성하기 때문에 설명이 부족한 텍스트, 실제 이미지와 상이한 스케치와 같이 자원의 정보가 불완전한 경우에는 제대로 된 이미지를 생성하지 못한다는 한계가 있다. 본 논문에서는 기존 연구의 한계점올 극복하기 위해 텍스트와 스케치 두 개의 자원을 동시에 활용하여 이미지를 생성하는 새로운 생성 기법 TS-GAN 을 제안한다. TS-GAN 은 두 단계로 이루어져 있으며 각 단계를 통해 더욱 사실적인 이미지를 생성한다. 본 논문에서 제안한 기법은 컴퓨터 비전 분야에서 많이 활용되는 CUB 데이터세트를 사용하여 이미지 생성 결과의 우수성을 보인다.

Image Generation from Korean Dialogue Text via Prompt-based Few-shot Learning (프롬프트 기반 퓨샷 러닝을 통한 한국어 대화형 텍스트 기반 이미지 생성)

  • Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.447-451
    • /
    • 2022
  • 본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.

  • PDF