While the Internet develops rapidly, a huge amount of image data collected from smart phones, digital cameras and black boxes are being shared through social media sites. Generally, social images are handled by tagging them with information. Due to the ease of sharing multimedia and the explosive increase in the amount of tag information, it may be considered too much hassle by some users to put the tags on images. Image retrieval is likely to be less accurate when tags are absent or mislabeled. In this paper, we suggest a method of extracting tags from social images by using image content. In this method, CNN(Convolutional Neural Network) is trained using ImageNet images with labels in the training set, and it extracts labels from instagram images. We use the extracted labels for automatic image tagging. The experimental results show that the accuracy is higher than that of instagram retrievals.
Annual Conference on Human and Language Technology
/
1992.10a
/
pp.591-599
/
1992
한글의 신속하고 정확한 정보전달 기능을 유지 발전시킴과 동시에, 정보 전달의 목적 및 효율성을 높이기 위하여, 인간심리에 직접 영향 미치는 시각적 이미지를 지니는 조형적 문자의 서체 및 기능 개발에 필요한 현행 한글서체들의 시각적 이미지에 대한 분석적 연구를 시도하였다. 대표적인 24개의 현행 한글서체에 대한 이미지를 표본조사 및 수치분류적 기법에 의한 이미지 특성을 분석하였다. 연구결과, 현행 한글서체는 크게 5개의 그룹으로 구분되며, 예서체는 현행 한글서체 중에서 가장 독특하고 집중된 이미지를 지닌 서체로 나타났다. 한글서체 개발은 수치적 분석에 의하여 방향정립 및 높은 예측성을 지닐 수 있으며. 목적지향적인 폰트개발 및 균형있는 서체운용 체계의 운용에 의하여 극대화될 수 있다.
Kim, Do-Hyoung;Song, Kwan-Dong;Wi, Seung-Ok;Kim, Ji-Hee;Jeon, Gwang-Gil
Annual Conference of KIPS
/
2019.10a
/
pp.1016-1018
/
2019
흑백 1채널 이미지를 3 채널 이미지로 색상화하고 Super-Resolution하여 의미 있는 정보 얻도록 한다. CCTV, 군사용 카메라, 차량용 블랙박스 등 많은 분야에서 주간에 촬영된 영상은 컬러 이미지로 많은 정보를 얻을 수 있다. 하지만 야간에 촬영된 영상은 빛이 없어서 영상에서 정보를 얻기가 원활하지 않다. 따라서 DCGAN을 통해 단일 채널의 흑백 이미지를 3채널의 색상화 이미지로 만들고, Super-Resolution 기술을 적용해서 해상도를 높여 가시광선이 없는 야간이나 어두운 공간에서도 의미있는 영상을 얻을 수 있도록 한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.5
/
pp.789-795
/
2002
Color image is formed of combination of three color channels. Therefore its architecture is very complicated and it requires complicated image Processing for effective image segmentation. In this paper. we propose architecture of universalized Color Morphological Pyramids(CMP) which is able to give effective image segmentation. Image Pyramid architecture is a successive Image sequence whose area ratio $2^{\int}({\int}=1,2,....,N)$ after filtering and subsampling of input image. In this technique, noise removed by sequential filtering and resolution is degraded by downsampling using CMP in various color spaces. After that, new level images are constructed that apply formula using distance of neighbor vectors in close level images and segments its image. The feasibility of proposed method is examined by comparing with the results obtained from the existing method.
With the development of deep learning, it is possible to solve various computer non-specialized problems such as image processing. However, most image processing methods use only the visual information of the image to process the image. Text data such as descriptions and annotations related to images may provide additional tactile and visual information that is difficult to obtain from the image itself. In this paper, we intend to improve image classification accuracy through a deep learning model that analyzes images and texts using image-text pairs. The proposed model showed an approximately 11% classification accuracy improvement over the deep learning model using only image information.
Park, Kyung-Wook;Koh, Jae-Han;Park, Jae-Han;Baeg, Seung-Ho;Baeg, Moon-Hong
Annual Conference of KIPS
/
2007.05a
/
pp.301-304
/
2007
자동으로 이미지 안에 존재하는 객체들을 인식하는 문제는 내용 기반 이미지 검색이나 로봇 비전과 같은 다양한 분야들에서 매우 중요한 문제이다. 이 문제를 해결하기 위하여 본 논문에서는 객체의 주요 색상 정보들을 이용하여 실시간으로 이미지 안의 객체들을 인식하는 알고리즘을 제안한다. 본 논문에서 제안하는 방법의 전체적인 구조는 다음과 같다. 처음에 MPEG-7 색상 정보 기술자들 중 하나인 주요 색상 정보 기술자를 이용하여 객체의 주요 색상 정보들을 추출한다. 이 때 이 정보는 가우시안 색상 모델링을 통하여 빛이나 그림자와 같은 외부 환경 조건에 좀 더 강인한 색상 정보로 변환된다. 다음으로 변환된 색상 정보들을 기반으로 주요 객체와 입력 이미지와의 픽셀 값차이를 계산하고, 임계값 이상의 값을 가지는 픽셀들을 제거한다. 마지막으로 입력 이미지에서 제거되지 않은 픽셀들을 기반으로 하나의 영역을 생성한다. 결론으로서, 본 논문에서는 제안된 방법에 대한 실험 평가들을 수행 및 분석하고 몇몇 한계점들에 대해서 알아본다. 또한 이 문제들을 해결하기 위한 앞으로의 연구 계획에 대해서 기술한다.
Journal of the Korean Society for Library and Information Science
/
v.32
no.2
/
pp.169-187
/
1998
The purpose of the study is to identify what terms are used, how they are categorized, and what they are related each others to search image files. Data collection was conducted through 5 photographies using 22 participants. The study shows that used terms were affected by image contents and size, and pre-iconography, iconology, time, geographical location, and relationship were important for image attributes.
멀티미디어 검색을 위한 MPEG-7 표준화 작업이 완료되어감에 따라, 멀티미디어 특징 기술자를 활용한 다양한 응용들이 나타나고 있다. 본 논문에서는 미키 마우스, 포켓 몬스터 또는 호돌이와 같은 지적 재산 정보인 동시에 고부가가치 대상인 캐릭터 이미지를 대상으로 하여, 캐릭터 이미지 특징을 분석하고, MPEG-7 에서 정의된 컬러 기술들간의 검색 효율을 비교하여, 캐릭터 이미지에 가장 적합한 기술자를 제안한다. 캐릭터 이미지는 자연 이미지와는 달리, 질감(Texture)이나 모양 (Shape)정보에 비해, 주로 컬러 정보에 의존하며,존재하는 컬러의 수가 3-6 개 범위 내에 주로 존재하고, 컬러의 분포가 고르며, 질감 성분이 많지 않은 특징을 갖고 있다. MPEG-7 에 정의된 Dominant Color, Scalable Color, Color Layout 및 Color Structure 4 종류의 기술자를 캐릭터 이미지 특징에 맞는 기술자를 유형별로 분류된 3,834개의 이미지 셋에 적용하여, 검색 성능 평가 지수인 ANMRR(Average Normalized Modified Retrieval Rank) 를 측정하여 가장 효율적인 기술자를 정의한다.
생성적 적대 네트워크를 활용하여 텍스트, 스케치 등 다양한 자원으로부터 이미지를 생성하기 위한 연구는 활발하게 진행되고 있으며 많은 실용적인 연구가 존재한다. 하지만 기존 연구들은 텍스트나 스케치 등 각 하나의 자원을 통해 이미지를 생성하기 때문에 설명이 부족한 텍스트, 실제 이미지와 상이한 스케치와 같이 자원의 정보가 불완전한 경우에는 제대로 된 이미지를 생성하지 못한다는 한계가 있다. 본 논문에서는 기존 연구의 한계점올 극복하기 위해 텍스트와 스케치 두 개의 자원을 동시에 활용하여 이미지를 생성하는 새로운 생성 기법 TS-GAN 을 제안한다. TS-GAN 은 두 단계로 이루어져 있으며 각 단계를 통해 더욱 사실적인 이미지를 생성한다. 본 논문에서 제안한 기법은 컴퓨터 비전 분야에서 많이 활용되는 CUB 데이터세트를 사용하여 이미지 생성 결과의 우수성을 보인다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.447-451
/
2022
본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.