Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.293-296
/
2024
현재 생성형 AI가 활발히 연구되고 있는 가운데, 대부분의 이미지 생성 AI는 프롬프트를 기반으로 한 Text-To-Image 방식을 주로 사용하고 있다. 하지만, 프롬프트 기반의 생성 AI는 실제 서비스에 도입하기 어려운 점이 많다. 여러 이미지 중, 하늘 이미지는 메타버스 등 가상 공간에서 매우 자주 사용되는 이미지 중 하나이면서 여러 입력값에 의해 이미지가 달라진다. 이 논문에서는 GAN을 활용해 기상 조건에 적합한 하늘 이미지를 생성하는 프로그램을 설계 및 구현한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.567-569
/
2023
GAN은 이미지 생성모델로서 이미지 공간에서 좋은 결과를 보여왔다. 우리는 이러한 GAN의 능력을 더욱 향상하기 위하여 본 연구에서 주파수 영역에서 이미지를 학습하고 생성하는 새로운 방법을 제안한다. 이를 위하여 먼저 학습데이터를 2D FFT로 주파수 영역으로 변환한 후 변환된 학습데이터를 GAN이 학습하게 한다. 학습 후에 GAN은 새로운 이미지를 생성하며 생성된 이미지를 2D IFFT하여 이미지 공간으로 변환한다. 이렇게 주파수 영역에서 이미지를 생성하는 방법은 이미지 공간에서 생성하는 방법보다 다양한 장점이 있다. 생성된 이미지의 품질을 평가하기 위하여 4개 데이터 셋에 4개의 평가지표를 사용하여 평가한 결과 주파수 영역에서 생성한 이미지가 IS, P&R, D&C 측면에서 더 좋은 것으로 평가되었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.6
/
pp.700-705
/
2020
Generative adversarial networks are methods of generating images by opposing two neural networks. When generating the image, randomly generated noise is rearranged to generate the image. The image generated by this method is not generated well depending on the noise, and it is difficult to generate a proper image when the number of pixels of the image is small In addition, the speed and size of data accumulation in data classification increases, and there are many difficulties in labeling them. In this paper, to solve this problem, we propose a technique to generate noise based on random noise using real data. Since the proposed system generates an image based on the existing image, it is confirmed that it is possible to generate a more natural image, and if it is used for learning, it shows a higher hit rate than the existing method using the hostile neural network respectively.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.293-296
/
2018
생성적 적대 네트워크를 활용하여 텍스트, 스케치 등 다양한 자원으로부터 이미지를 생성하기 위한 연구는 활발하게 진행되고 있으며 많은 실용적인 연구가 존재한다. 하지만 기존 연구들은 텍스트나 스케치 등 각 하나의 자원을 통해 이미지를 생성하기 때문에 설명이 부족한 텍스트, 실제 이미지와 상이한 스케치와 같이 자원의 정보가 불완전한 경우에는 제대로 된 이미지를 생성하지 못한다는 한계가 있다. 본 논문에서는 기존 연구의 한계점올 극복하기 위해 텍스트와 스케치 두 개의 자원을 동시에 활용하여 이미지를 생성하는 새로운 생성 기법 TS-GAN 을 제안한다. TS-GAN 은 두 단계로 이루어져 있으며 각 단계를 통해 더욱 사실적인 이미지를 생성한다. 본 논문에서 제안한 기법은 컴퓨터 비전 분야에서 많이 활용되는 CUB 데이터세트를 사용하여 이미지 생성 결과의 우수성을 보인다.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.2
/
pp.291-298
/
2022
A generative adversarial network (GAN) is a network in which two internal neural networks (generative network and discriminant network) learn while competing with each other. The generator creates an image close to reality, and the delimiter is programmed to better discriminate the image of the constructor. This technology is being used in various ways to create, transform, and restore the entire image X into another image Y. This paper describes a method that can be forged into another object naturally, after extracting only a partial image from the original image. First, a new image is created through the previously trained DCGAN model, after extracting only a partial image from the original image. The original image goes through a process of naturally combining with, after re-styling it to match the texture and size of the original image using the overall style transfer technique. Through this study, the user can naturally add/transform the desired object image to a specific part of the original image, so it can be used as another field of application for creating fake images.
Since ChatGPT was released in 2022, the generative artificial intelligence (AI) industry has seen massive growth and is expected to bring significant innovations to cognitive tasks. AI-based image generation, in particular, is leading major changes in the digital world. This study investigates the technical foundations of Midjourney, Stable Diffusion, and Firefly-three notable AI image generation tools-and compares their effectiveness by examining the images they produce. The results show that these AI tools can generate realistic images of tomatoes, strawberries, paprikas, and cucumbers, typical crops grown in greenhouse. Especially, Firefly stood out for its ability to produce very realistic images of greenhouse-grown crops. However, all tools struggled to fully capture the environmental context of greenhouses where these crops grow. The process of refining prompts and using reference images has proven effective in accurately generating images of strawberry fruits and their cultivation systems. In the case of generating cucumber images, the AI tools produced images very close to real ones, with no significant differences found in their evaluation scores. This study demonstrates how AI-based image generation technology can be applied in agriculture, suggesting a bright future for its use in this field.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.437-439
/
2003
자연의 진화 과정을 모방한 유전자 알고리즘을 이미지 생성기 분야에 적응하여 무한히 다양한 이미지를 생성하는 것은 가능한 반면, 다음 세대에 생성될 이미지들의 예측은 난해하다. 이러한 배경 하에 본 논문에서는 대화식 프랙탈 이미지 생성기를 구현하여, Direct draw mode를 통해 프랙탈 이미지를 생성하기 위해 사용되는 아핀들을 사용자가 직접 변환함으로써 미세 조정이 가능하도록 한다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.447-451
/
2022
본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.774-777
/
2017
사진에는 의도하지 않은 노이즈나 찍는 과정 중에 발생한 실수나 문제로 원치 않게 가려진 부분이 있을 수 있는데, 이미지 완성 어플리케이션은 사용자가 전문적인 프로그램이나 전문가의 도움 없이 노이즈나 가려진 부분을 제거할 수 있도록 하였다. 본 논문에서는 GAN(Generative Adversial Network) 모델에 노이즈가 있는 사진을 입력으로 넣어 노이즈가 제거 된 사진을 생성하도록 하였고, 생성 된 사진과 기존 이미지가 자연스럽게 합성 될 수 있도록 보정을 하여 완성 된 이미지를 출력하는 어플리케이션을 제안한다. GAN 분류 모델의 시그모이드 교차-엔트로피와 생성이미지와 원본이미지간의 평균 제곱 오차를 함께 최소화 하도록 생성 모델을 학습시켰고, 낮은 평균 제곱 오차를 가지는 완성 이미지를 생성 할 수 있었다. 이미지 보정을 통해 생성 된 이미지와 입력 이미지와의 밝기 차이를 해소시켜 좀 더 자연스러운 완성 이미지 결과를 얻을 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.258-261
/
2022
최근 딥러닝 기술이 발전하면서 이미지를 설명하는 캡션을 생성하는 모델 또한 발전하였다. 하지만 기존 이미지 캡션 모델은 대다수 영어로 구현되어있어 영어로 캡션을 생성하게 된다. 따라서 한국어 캡션을 생성하기 위해서는 영어 이미지 캡션 결과를 한국어로 번역하는 과정이 필요하다는 문제가 있다. 이에 본 연구에서는 기존의 이미지 캡션 모델을 이용하여 한국어 캡션을 직접 생성하는 모델을 만들고자 한다. 이를 위해 이미지 캡션 모델 중 잘 알려진 Show, Attend and Tell 모델을 이용하였다. 학습에는 MS-COCO 데이터의 한국어 캡션 데이터셋을 이용하였다. 한국어 형태소 분석기를 이용하여 토큰을 만들고 캡션 모델을 재학습하여 한국어 캡션을 생성할 수 있었다. 만들어진 한국어 이미지 캡션 모델은 BLEU 스코어를 사용하여 평가하였다. 이때 BLEU 스코어를 사용하여 생성된 한국어 캡션과 영어 캡션의 성능을 평가함에 있어서 언어의 차이에 인한 결과 차이가 발생할 수 있으므로, 영어 이미지 캡션 생성 모델의 출력을 한국어로 번역하여 같은 언어로 모델을 평가한 후 최종 성능을 비교하였다. 평가 결과 한국어 이미지 캡션 생성 모델이 영어 이미지 캡션 생성 모델을 한국어로 번역한 결과보다 좋은 BLEU 스코어를 갖는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.