• Title/Summary/Keyword: 이러닝 플랫폼

Search Result 184, Processing Time 0.024 seconds

Optimal Machine Learning Model for Detecting Normal and Malicious Android Apps (안드로이드 정상 및 악성 앱 판별을 위한 최적합 머신러닝 기법)

  • Lee, Hyung-Woo;Lee, HanSeong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • The mobile application based on the Android platform is simple to decompile, making it possible to create malicious applications similar to normal ones, and can easily distribute the created malicious apps through the Android third party app store. In this case, the Android malicious application in the smartphone causes several problems such as leakage of personal information in the device, transmission of premium SMS, and leakage of location information and call records. Therefore, it is necessary to select a optimal model that provides the best performance among the machine learning techniques that have published recently, and provide a technique to automatically identify malicious Android apps. Therefore, in this paper, after adopting the feature engineering to Android apps on official test set, a total of four performance evaluation experiments were conducted to select the machine learning model that provides the optimal performance for Android malicious app detection.

A Study on Environmental Factor Recommendation Technology based on Deep Learning for Digital Agriculture (디지털 농업을 위한 딥러닝 기반의 환경 인자 추천 기술 연구)

  • Han-Jin Cho
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • Smart Farm means creating new value in various fields related to agriculture, including not only agricultural production but also distribution and consumption through the convergence of agriculture and ICT. In Korea, a rental smart farm is created to spread smart agriculture, and a smart farm big data platform is established to promote data collection and utilization. It is pushing for digital transformation of agricultural products distribution from production areas to consumption areas, such as expanding smart APCs, operating online exchanges, and digitizing wholesale market transaction information. As such, although agricultural data is generated according to characteristics from various sources, it is only used as a service using statistics and standardized data. This is because there are limitations due to distributed data collection from agriculture to production, distribution, and consumption, and it is difficult to collect and process various types of data from various sources. Therefore, in this paper, we analyze the current state of domestic agricultural data collection and sharing for digital agriculture and propose a data collection and linkage method for artificial intelligence services. And, using the proposed data, we propose a deep learning-based environmental factor recommendation method.

Design of a Live Commerce Platform Using a Multiview (멀티뷰를 활용한 라이브 커머스 플랫폼 설계)

  • Woo, Yeji;Won, Aeryeong;Yun, Jeongwon;Lee, Shinhwa;Jeon, Sumin;Lee, Sangun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.157-160
    • /
    • 2021
  • 코로나 19로 인한 사회적 거리 두기가 계속되면서 온라인 쇼핑을 이용하는 고객이 증가했다. 그중 원활한 소통이 가능한 라이브 커머스 시장이 크게 성장했다. 모바일 기기만 있으면 시간과 장소의 제약 없이 라이브 커머스를 이용할 수 있지만 제한된 정보제공과 장애인을 위한 서비스가 없다는 것이 단점이다. 따라서 본 논문에서는 다양한 정보를 제공하기 위한 멀티뷰 화면을 송출하고 TTS, 딥러닝 기반의 STT 기술을 활용해 시·청각 장애인을 위한 기능을 포함한 새로운 형태의 라이브 커머스 플랫폼 및 시스템 구조를 제안한다.

  • PDF

Intelligent Learning Management System for Education of Artificial Intelligence Coding (인공지능 코딩 교육을 위한 지능형 학습관리시스템)

  • Lee, Se-Hoon;Lee, Seong-Ju;Yang, Seung-Kuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.451-452
    • /
    • 2021
  • 본 논문에서는 머신러닝의 원리를 쉽게 이해할 수 있는 블록 기반 코딩 플랫폼을 내장한 LMS를 제안한다. 해당 LMS는 Moodle이라는 LMS 플랫폼을 기반으로 사이트가 구축되었으며, LTI를 통해 LMS 내부에 DIY라는 코딩 툴을 내장 시켰다. 또한, 사용자의 모든 로그데이터를 통해 추천시스템을 구상하였으며, DIY를 통해 실행되는 코드를 Python Pedal라이브러리를 백엔드에서 실행 시켜 사용자가 작성한 코드에 대해 즉각적인 피드백을 제공하게 구성되어 있다.

  • PDF

Learning model management platform based on hash function considering for integration from different timeseries data (서로 다른 시계열 데이터들간 통합 활용을 고려한 해시 함수 기반 학습 모델 관리 플랫폼)

  • Yu, Miseon;Moon, Jaewon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.45-48
    • /
    • 2022
  • IoT 기술의 발전 및 확산으로 다양한 도메인에서 서로 다른 특성의 시계열 데이터가 수집되고 있다. 이에 따라 단일 목적으로 수집된 시계열 데이터만 아니라, 다른 목적으로 수집된 시계열 데이터들 또한 통합하여 분석활용하려는 수요 또한 높아지고 있다. 본 논문은 파편화된 시계열 데이터들을 선택하여 통합한 후 딥러닝 모델을 생성하고 활용할 수 있는 해시함수 기반 학습 모델 관리 플랫폼을 설계하고 구현하였다. 특정되지 않은 데이터들을 기반하여 모델을 학습하고 활용할 경우 생성 모델이 개별적으로 어떤 데이터로 어떻게 생성되었는지 기술되어야 향후 활용에 용이하다. 특히 시계열 데이터의 경우 학습 데이터의 시간 정보에 의존적일 수밖에 없으므로 해당 정보의 관리도 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 해시 함수를 이용해서 생성된 모델을 계층적으로 저장하여 원하는 모델을 쉽게 검색하고 활용할 수 있도록 하였다.

  • PDF

A Success Prediction Model for Debut Webtoon Based on Reader reaction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 활용한 독자 반응 기반 웹툰 데뷔작 성공 예측 모델)

  • Heo, Eun Yeong;Kim, Seung Hwa;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.770-773
    • /
    • 2019
  • 본 논문에서는 매년 성장하는 웹툰 시장 속에서 신인 작가들이 성공할 수 있는 성공 요인을 밝히고자 하였다. 국내 1위 웹툰 플랫폼인 네이버 웹툰 중 데뷔작을 기준으로 완결 웹툰 212개, 연재 중인 웹툰 112개, 총 324개의 웹툰을 수집하여 연구를 진행하였다. 기존 선행연구와의 차별화를 두기 위해 독자의 직접적인 반응 중 하나인 댓글을 성공 요인에 포함하였다. 댓글에 담긴 긍정, 부정을 나타내는 주관을 탐지하기 위해 딥러닝을 이용하여 감성 분석을 실시하였다. 각 웹툰에 대한 댓글 반응을 포함하여 평균, '좋아요' 수, 장르 그리고 첫 화 댓글 수와 5화까지 평균 댓글 수를 흥행에 영향을 미치는 독립변수로 사용했다. 댓글 반응이 중요 요인인지를 확인하기 위해 각 모델 생성 시 댓글 반응을 포함한 모델과 포함하지 않은 모델을 생성하여 성능 평가를 실시하였다. 로지스틱 회귀분석, 아다 부스트, 그리고 서포트 벡터 머신 모델을 정확도와 ROC 그래프를 이용해 효율성을 비교하고, 이를 통해 댓글 반응을 활용한 로지스틱 회귀 모델이 가장 적합하다고 판단하였다. 모델 생성 결과 '좋아요' 수, 1화 댓글 수, 댓글 반응 순으로 성공 요인에 많은 영향을 미치는 것을 알 수 있었다.

Design and Development of Modular Replaceable AI Server for Image Deep Learning in Social Robots on Edge Devices (엣지 디바이스인 소셜 로봇에서의 영상 딥러닝을 위한 모듈 교체형 인공지능 서버 설계 및 개발)

  • Kang, A-Reum;Oh, Hyun-Jeong;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.470-476
    • /
    • 2020
  • In this paper, we present the design of modular replaceable AI server for image deep learning that separates the server from the Edge Device so as to drive the AI block and the method of data transmission and reception. The modular replaceable AI server for image deep learning can reduce the dependency between social robots and edge devices where the robot's platform will be operated to improve drive stability. When a user requests a function from an AI server for interaction with a social robot, modular functions can be used to return only the results. Modular functions in AI servers can be easily maintained and changed by each module by the server manager. Compared to existing server systems, modular replaceable AI servers produce more efficient performance in terms of server maintenance and scale differences in the programs performed. Through this, more diverse image deep learning can be included in robot scenarios that allow human-robot interaction, and more efficient performance can be achieved when applied to AI servers for image deep learning in addition to robot platforms.

A Study on Application of u-Learning System in Network Centric Warfare Environment (네트워크중심전 환경에서의 u-러닝 시스템 적용방안에 관한 연구)

  • Cha, Hyun-Jong;Yang, Ho-Kyung;Ryou, Hwang-Bin;Jo, Yong-Gun
    • Convergence Security Journal
    • /
    • v.10 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • With the development of information and communications technology(ICT), the concept of ubiquitous that we can communicate regardless of time and place appears. Due to the development of the technology delivering information, current society is called intellectualization society developed from informatization society. The intellectualization society is based on knowledge accumulated by processing information. The education methods are also developed into a concept of u-Learning applying the concept of ubiquitous from the concept of e-Learning using a computer. The military also points out education as a key policy. The aspect of war is changing to NCW(Network Centric Warfare) from platform centric warfare. Therefore, collecting and managing the war situations in real time is a key to controlling command. To this end, it needs to maximize individuals and groups' ability to cultivate the military with cutting-edge knowledge. Therefore, this study aims to look into methods to apply u-learning system in training and military actions according to changes in war environments and ICT.

A Study on Experts' Perception Survey on Elementary AI Education Platform (초등 AI 교육 플랫폼에 대한 전문가 인식조사 연구)

  • Lee, Jaeho;Lee, Seunghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.483-494
    • /
    • 2020
  • With the advent of the 4th Industrial Revolution, interest in AI education is increasing. In order to cultivate talented people with AI competencies who will lead the future, AI education must be conducted in a sound manner at the school site. Although AI education is being conducted at home and abroad, it was determined that the role of the AI education platform is important to implement better AI education, so this study investigated the perception of experts on the AI education platform. A perception survey was conducted based on five criteria: teaching and learning management, educational contents, accessibility, performance of AI education platform, and level suitability of elementary school students. As a results, the number of 103 educational experts selected 'Entry' as the most proper platform among the eight platforms - 'Machine learning for Kids', 'Teachable Machine', 'AI Oceans(code.org)', 'Entry', 'Genie Block', 'Elice', 'mBlock' and etc. Analysis shows that this is because 'Entry' provides quality educational content, has convenient accessibility, is easy to manage teaching and learning, as well as an AI education platform suitable for the level of elementary school. In order to apply various AI education platforms to the school field, it is necessary to train teachers in AI-related training to train them as AI education experts, and to continuously provide opportunities to experience AI education platforms. In this study, there are limitations to what is called 'a population perception survey'. because only 103 people were surveyed, and most of the experts are working in a specific area(Gyeonggi-do). In the future, it is judged that research targeting experts at the national level should be conducted to supplement these limitations.

Metaverse platform-based flipped learning framework development and application (메타버스 플랫폼 기반 플립러닝 프레임워크 개발 및 적용)

  • Ko, Hyunjoo;Jeon, Jaecheon;Yoo, Inhwan
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.2
    • /
    • pp.129-140
    • /
    • 2022
  • Our society is undergoing rapid changes due to COVID-19, and in particular, online learning using digital technology is being tried in various forms in the educational field. A change has occurred. However, the limitations of distance learning, such as reduced learning immersion in non-face-to-face educational situations, lack of interaction between teachers and learners, and lower basic academic ability, are constantly being raised, and an appropriate educational strategy is needed to solve these problems. This study focused on the concept of 'Metaverse' based on the interaction between the virtual world and the real world, and tried to verify the effectiveness of educational activities based on it. In detail, we propose an educational framework for realizing flipped learning in the Metaverse Virtual Classroom, and a frame developed by measuring the learning immersion of a single group with a teaching/learning program developed based on this. The effectiveness of the work was verified. When the metaverse platform-based flip learning framework and education program proposed in this study were applied, it was confirmed that learners' immersion in learning was improved.